+1 Recommend
0 collections
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Modified Citrus Pectin Reduces Galectin-3 Expression and Disease Severity in Experimental Acute Kidney Injury


      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.


          Galectin-3 is a β-galactoside binding lectin with roles in diverse processes including proliferation, apoptosis, inflammation and fibrosis which are dependent on different domains of the molecule and subcellular distribution. Although galectin-3 is known to be upregulated in acute kidney injury, the relative importance of its different domains and functions are poorly understood in the underlying pathogenesis. Therefore we experimentally modulated galectin-3 in folic acid (FA)-induced acute kidney injury utilising modified citrus pectin (MCP), a derivative of pectin which can bind to the galectin-3 carbohydrate recognition domain thereby predominantly antagonising functions linked to this role. Mice were pre-treated with normal or 1% MCP-supplemented drinking water one week before FA injection. During the initial injury phase, all FA-treated mice lost weight whilst their kidneys enlarged secondary to the renal insult; these gross changes were significantly lessened in the MCP group but this was not associated with significant changes in galectin-3 expression. At a histological level, MCP clearly reduced renal cell proliferation but did not affect apoptosis. Later, during the recovery phase at two weeks, MCP-treated mice demonstrated reduced galectin-3 in association with decreased renal fibrosis, macrophages, pro-inflammatory cytokine expression and apoptosis. Other renal galectins, galectin-1 and -9, were unchanged. Our data indicates that MCP is protective in experimental nephropathy with modulation of early proliferation and later galectin-3 expression, apoptosis and fibrosis. This raises the possibility that MCP may be a novel strategy to reduce renal injury in the long term, perhaps via carbohydrate binding-related functions of galectin-3.

          Related collections

          Most cited references46

          • Record: found
          • Abstract: found
          • Article: not found

          Galectin-3 marks activated macrophages in failure-prone hypertrophied hearts and contributes to cardiac dysfunction.

          Inflammatory mechanisms have been proposed to be important in heart failure (HF), and cytokines have been implicated to add to the progression of HF. However, it is unclear whether such mechanisms are already activated when hypertrophied hearts still appear well-compensated and whether such early mechanisms contribute to the development of HF. In a comprehensive microarray study, galectin-3 emerged as the most robustly overexpressed gene in failing versus functionally compensated hearts from homozygous transgenic TGRmRen2-27 (Ren-2) rats. Myocardial biopsies obtained at an early stage of hypertrophy before apparent HF showed that expression of galectin-3 was increased specifically in the rats that later rapidly developed HF. Galectin-3 colocalized with activated myocardial macrophages. We found galectin-3-binding sites in rat cardiac fibroblasts and the extracellular matrix. Recombinant galectin-3 induced cardiac fibroblast proliferation, collagen production, and cyclin D1 expression. A 4-week continuous infusion of low-dose galectin-3 into the pericardial sac of healthy Sprague-Dawley rats led to left ventricular dysfunction, with a 3-fold differential increase of collagen I over collagen III. Myocardial galectin-3 expression was increased in aortic stenosis patients with depressed ejection fraction. This study shows that an early increase in galectin-3 expression identifies failure-prone hypertrophied hearts. Galectin-3, a macrophage-derived mediator, induces cardiac fibroblast proliferation, collagen deposition, and ventricular dysfunction. This implies that HF therapy aimed at inflammatory responses may need to be targeted at the early stages of HF and probably needs to antagonize multiple inflammatory mediators, including galectin-3.
            • Record: found
            • Abstract: not found
            • Article: not found

            Galectins: a family of animal beta-galactoside-binding lectins.

              • Record: found
              • Abstract: found
              • Article: not found

              Expression of galectin-3 modulates T-cell growth and apoptosis.

              Galectin-3 is a member (if a large family of beta-galactoside-binding animal lectins. It has been shown that the expression of galectin-3 is upregulated in proliferating cells, suggesting a possible role for this lectin in regulation of cell growth. Previously, we have shown that T cells infected with human T-cell leukemia virus type I express high levels of galectin-3, in contrast to uninfected cells, which do not express detectable amounts of this protein. In this study, we examined growth properties of human leukemia T cells transfected with galectin-3 cDNA, and thus constitutively overexpressing this lectin. Transfectants expressing galectin-3 displayed higher growth rates than control transfectants, which do not express this lectin. Furthermore, galectin-3 expression in these cells confers resistance to apoptosis induced by anti-Fas antibody and staurosporine. Galectin-3 was found to have significant sequence similarity with Bcl-2, a well-characterized suppressor of apoptosis. In particular, the lectin contains the NWGR motif that is highly conserved among members of the Bcl-2 family and shown to be critical for the apoptosis-suppressing activity. We further demonstrated that galectin-3 interacts with Bc1-2 in a lactose-inhibitable manner. We conclude that galectin-3 is a regulator of cell growth and apoptosis and it may function through a cell death inhibition pathway that involves Bcl-2.

                Author and article information

                Role: Editor
                PLoS One
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                8 April 2011
                : 6
                : 4
                : e18683
                [1]Nephro-Urology Unit, UCL Institute of Child Health, London, United Kingdom
                Universidade de Sao Paulo, Brazil
                Author notes

                Conceived and designed the experiments: PJW DAL. Performed the experiments: MKJ KLP DAL. Analyzed the data: MKJ KLP PJW DAL. Wrote the paper: PJW DAL.

                Kolatsi-Joannou et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                : 12 November 2010
                : 10 March 2011
                Page count
                Pages: 9
                Research Article
                Model Organisms
                Animal Models
                Acute Renal Failure
                Chronic Kidney Disease
                Tubulointerstitial Disease



                Comment on this article