36
views
0
recommends
+1 Recommend
1 collections
    1
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Cardiovascular Outcomes with Sacubitril-Valsartan in Heart Failure: Emerging Clinical Data

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          One of the defining features of heart failure (HF) is neurohormonal activation. The renin-angiotensin-aldosterone-system (RAAS) and sympathetic nervous system (SNS) cause vasoconstriction and fluid retention and, in response, the secretion of natriuretic peptides (NPs) from volume and pressure-overloaded myocardium promotes vasodilation and diuresis. Inhibition of the RAAS with either angiotensin-converting enzyme inhibitors (ACEI) or angiotensin receptor blockers (ARB) has been the cornerstone of medical treatment for HF with a reduced ejection fraction (HFrEF) but, until recently, it was unclear how the beneficial effects of NPs may be augmented in patients with HF. Neprilysin, a metalloproteinase widely distributed throughout the body, plays a role in degrading the gross excess of circulating NPs in patients with HF. Early studies of neprilysin inhibition suggested possible physiological benefits. In 2014, the PARADIGM-HF trial found that sacubitril-valsartan, a combination of the ARB valsartan, and the neprilysin inhibitor sacubitril, was superior to enalapril in patients with HFrEF, reducing the relative risk of cardiovascular (CV) death or first hospitalisation with HF by 20%. Almost half of the patients with HF symptoms have a “preserved” ejection fraction (HFpEF); however, the PARAGON-HF study found that sacubitril-valsartan in patients with LVEF ≥45% had no effect on CV death or first and recurrent hospitalisations with HF compared to valsartan. Guidelines across the world have changed to include sacubitril-valsartan for patients with HFrEF yet, nearly 6 years after PARADIGM-HF, there is still uncertainty as to when and in whom sacubitril-valsartan should be started. Furthermore, there may yet be subsets of patients with HFpEF who might benefit from treatment with sacubitril-valsartan. This review will describe the mechanisms behind the outcome benefit of sacubitril-valsartan in patients with HFrEF and to consider its future role in the management of patients with HF.

          Related collections

          Most cited references 70

          • Record: found
          • Abstract: found
          • Article: not found

          Outcome of heart failure with preserved ejection fraction in a population-based study.

          The importance of heart failure with preserved ejection fraction is increasingly recognized. We conducted a study to evaluate the epidemiologic features and outcomes of patients with heart failure with preserved ejection fraction and to compare the findings with those from patients who had heart failure with reduced ejection fraction. From April 1, 1999, through March 31, 2001, we studied 2802 patients admitted to 103 hospitals in the province of Ontario, Canada, with a discharge diagnosis of heart failure whose ejection fraction had also been assessed. The patients were categorized in three groups: those with an ejection fraction of less than 40 percent (heart failure with reduced ejection fraction), those with an ejection fraction of 40 to 50 percent (heart failure with borderline ejection fraction), and those with an ejection fraction of more than 50 percent (heart failure with preserved ejection fraction). Two groups were studied in detail: those with an ejection fraction of less than 40 percent and those with an ejection fraction of more than 50 percent. The main outcome measures were death within one year and readmission to the hospital for heart failure. Thirty-one percent of the patients had an ejection fraction of more than 50 percent. Patients with heart failure with preserved ejection fraction were more likely to be older and female and to have a history of hypertension and atrial fibrillation. The presenting history and clinical examination findings were similar for the two groups. The unadjusted mortality rates for patients with an ejection fraction of more than 50 percent were not significantly different from those for patients with an ejection fraction of less than 40 percent at 30 days (5 percent vs. 7 percent, P=0.08) and at 1 year (22 percent vs. 26 percent, P=0.07); the adjusted one-year mortality rates were also not significantly different in the two groups (hazard ratio, 1.13; 95 percent confidence interval, 0.94 to 1.36; P=0.18). The rates of readmission for heart failure and of in-hospital complications did not differ between the two groups. Among patients presenting with new-onset heart failure, a substantial proportion had an ejection fraction of more than 50 percent. The survival of patients with heart failure with preserved ejection fraction was similar to that of patients with reduced ejection fraction. Copyright 2006 Massachusetts Medical Society.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Biomarkers in heart failure.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Effect of nesiritide in patients with acute decompensated heart failure.

              Nesiritide is approved in the United States for early relief of dyspnea in patients with acute heart failure. Previous meta-analyses have raised questions regarding renal toxicity and the mortality associated with this agent. We randomly assigned 7141 patients who were hospitalized with acute heart failure to receive either nesiritide or placebo for 24 to 168 hours in addition to standard care. Coprimary end points were the change in dyspnea at 6 and 24 hours, as measured on a 7-point Likert scale, and the composite end point of rehospitalization for heart failure or death within 30 days. Patients randomly assigned to nesiritide, as compared with those assigned to placebo, more frequently reported markedly or moderately improved dyspnea at 6 hours (44.5% vs. 42.1%, P=0.03) and 24 hours (68.2% vs. 66.1%, P=0.007), but the prespecified level for significance (P≤0.005 for both assessments or P≤0.0025 for either) was not met. The rate of rehospitalization for heart failure or death from any cause within 30 days was 9.4% in the nesiritide group versus 10.1% in the placebo group (absolute difference, -0.7 percentage points; 95% confidence interval [CI], -2.1 to 0.7; P=0.31). There were no significant differences in rates of death from any cause at 30 days (3.6% with nesiritide vs. 4.0% with placebo; absolute difference, -0.4 percentage points; 95% CI, -1.3 to 0.5) or rates of worsening renal function, defined by more than a 25% decrease in the estimated glomerular filtration rate (31.4% vs. 29.5%; odds ratio, 1.09; 95% CI, 0.98 to 1.21; P=0.11). Nesiritide was not associated with an increase or a decrease in the rate of death and rehospitalization and had a small, nonsignificant effect on dyspnea when used in combination with other therapies. It was not associated with a worsening of renal function, but it was associated with an increase in rates of hypotension. On the basis of these results, nesiritide cannot be recommended for routine use in the broad population of patients with acute heart failure. (Funded by Scios; ClinicalTrials.gov number, NCT00475852.).
                Bookmark

                Author and article information

                Journal
                Ther Clin Risk Manag
                Ther Clin Risk Manag
                TCRM
                tcriskman
                Therapeutics and Clinical Risk Management
                Dove
                1176-6336
                1178-203X
                04 August 2020
                2020
                : 16
                : 715-726
                Affiliations
                [1 ]Department of Academic Cardiology, Hull York Medical School, Hull and East Yorkshire Medical Research and Teaching Centre, Castle Hill Hospital , Kingston upon Hull HU16 5JQ, UK
                [2 ]Robertson Institute of Biostatistics and Clinical Trials Unit, University of Glasgow, University Avenue , Glasgow G12 8QQ, UK
                Author notes
                Correspondence: Joseph J Cuthbert Department of Academic Cardiology, Hull York Medical School, Hull and East Yorkshire Medical Research and Teaching Centre, Castle Hill Hospital , Cottingham, Kingston upon HullHU16 5JQ, UKTel + 44 (0)1482 461776Fax + 44 (0)1482 461779 Email joe.cuthbert@hey.nhs.uk
                Article
                234772
                10.2147/TCRM.S234772
                7425097
                © 2020 Cuthbert et al.

                This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License ( http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms ( https://www.dovepress.com/terms.php).

                Page count
                Figures: 2, Tables: 4, References: 99, Pages: 12
                Categories
                Review

                Comments

                Comment on this article