6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Interaction of Nevirapine with the Peptide Binding Groove of HLA-DRB1*01:01 and Its Effect on the Conformation of HLA-Peptide Complex

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Human leukocyte antigen (HLA)-DRB1*01:01 has been shown to be involved in nevirapine-induced hepatic hypersensitivity reactions. In the present study, in silico docking simulations and molecular dynamics simulations were performed to predict the interaction mode of nevirapine with the peptide binding groove of HLA-DRB1*01:01 and its possible effect on the position and orientation of the ligand peptide derived from hemagglutinin (HA). In silico analyses suggested that nevirapine interacts with HLA-DRB1*01:01 around the P4 pocket within the peptide binding groove and the HA peptide stably binds on top of nevirapine at the groove. The analyses also showed that binding of nevirapine at the groove will significantly change the inter-helical distances of the groove. An in vitro competitive assay showed that nevirapine (1000 μM) increases the binding of the HA peptide to HLA-DRB1*01:01 in an allele-specific manner. These results indicate that nevirapine might interact directly with the P4 pocket and modifies its structure, which could change the orientation of loaded peptides and the conformation of HLA-DRB1*01:01; these changes could be distinctively recognized by T-cell receptors. Through this molecular mechanism, nevirapine might stimulate the immune system, resulting in hepatic hypersensitivity reactions.

          Related collections

          Most cited references20

          • Record: found
          • Abstract: found
          • Article: not found

          Immune self-reactivity triggered by drug-modified HLA-peptide repertoire.

          Human leukocyte antigens (HLAs) are highly polymorphic proteins that initiate immunity by presenting pathogen-derived peptides to T cells. HLA polymorphisms mostly map to the antigen-binding cleft, thereby diversifying the repertoire of self-derived and pathogen-derived peptide antigens selected by different HLA allotypes. A growing number of immunologically based drug reactions, including abacavir hypersensitivity syndrome (AHS) and carbamazepine-induced Stevens-Johnson syndrome (SJS), are associated with specific HLA alleles. However, little is known about the underlying mechanisms of these associations, including AHS, a prototypical HLA-associated drug reaction occurring exclusively in individuals with the common histocompatibility allele HLA-B*57:01, and with a relative risk of more than 1,000 (refs 6, 7). We show that unmodified abacavir binds non-covalently to HLA-B*57:01, lying across the bottom of the antigen-binding cleft and reaching into the F-pocket, where a carboxy-terminal tryptophan typically anchors peptides bound to HLA-B*57:01. Abacavir binds with exquisite specificity to HLA-B*57:01, changing the shape and chemistry of the antigen-binding cleft, thereby altering the repertoire of endogenous peptides that can bind HLA-B*57:01. In this way, abacavir guides the selection of new endogenous peptides, inducing a marked alteration in 'immunological self'. The resultant peptide-centric 'altered self' activates abacavir-specific T-cells, thereby driving polyclonal CD8 T-cell activation and a systemic reaction manifesting as AHS. We also show that carbamazepine, a widely used anti-epileptic drug associated with hypersensitivity reactions in HLA-B*15:02 individuals, binds to this allotype, producing alterations in the repertoire of presented self peptides. Our findings simultaneously highlight the importance of HLA polymorphism in the evolution of pharmacogenomics and provide a general mechanism for some of the growing number of HLA-linked hypersensitivities that involve small-molecule drugs.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Human leukocyte antigen class I-restricted activation of CD8+ T cells provides the immunogenetic basis of a systemic drug hypersensitivity.

            The basis for strong immunogenetic associations between particular human leukocyte antigen (HLA) class I allotypes and inflammatory conditions like Behçet's disease (HLA-B51) and ankylosing spondylitis (HLA-B27) remain mysterious. Recently, however, even stronger HLA associations are reported in drug hypersensitivities to the reverse-transcriptase inhibitor abacavir (HLA-B57), the gout prophylactic allopurinol (HLA-B58), and the antiepileptic carbamazepine (HLA-B*1502), providing a defined disease trigger and suggesting a general mechanism for these associations. We show that systemic reactions to abacavir were driven by drug-specific activation of cytokine-producing, cytotoxic CD8+ T cells. Recognition of abacavir required the transporter associated with antigen presentation and tapasin, was fixation sensitive, and was uniquely restricted by HLA-B*5701 and not closely related HLA allotypes with polymorphisms in the antigen-binding cleft. Hence, the strong association of HLA-B*5701 with abacavir hypersensitivity reflects specificity through creation of a unique ligand as well as HLA-restricted antigen presentation, suggesting a basis for the strong HLA class I-association with certain inflammatory disorders.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              HLA and pharmacogenetics of drug hypersensitivity.

              Immunologically mediated drug reactions have been traditionally classified as unpredictable based on the fact that they cannot be predicted strictly on the pharmacological action of the drug. Such adverse drug reactions are associated with considerable morbidity and include severe cutaneous adverse reactions such as Stevens-Johnson syndrome/toxic epidermal necrolysis and the drug hypersensitivity syndromes (drug reaction with eosinophilia and systemic symptoms/drug-induced hypersensitivity syndrome). Over the last decade there have been many associations between these syndromes and Class I and II HLA alleles of the MHC, which have enriched and driven our knowledge of their immunopathogenesis. Significant translation has also occurred in the case of HLA-B*5701 screening being used to exclude at risk patients from abacavir and prevent abacavir hypersensitivity. The ultimate translation of the knowledge of how drugs interact with HLA would be applicable to preclinical drug screening programs to improve the safety and cost-effectiveness of drug design and development.
                Bookmark

                Author and article information

                Journal
                Int J Mol Sci
                Int J Mol Sci
                ijms
                International Journal of Molecular Sciences
                MDPI
                1422-0067
                04 June 2018
                June 2018
                : 19
                : 6
                : 1660
                Affiliations
                [1 ]Drug Metabolism & Pharmacokinetics Research Laboratories, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan; abe.koji.ce@ 123456daiichisankyo.co.jp (K.A.); ando.osamu.jy@ 123456daiichisankyo.co.jp (O.A.)
                [2 ]Biomarker Department, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan; hagihara.katsunobu.fc@ 123456daiichisankyo.co.jp
                [3 ]Institute of Advanced Biosciences, Tokai University, 4-1-1 Kitakaname, Hiratsuka-shi, Kanagawa 259-1292, Japan; hirayama@ 123456is.icc.u-tokai.ac.jp
                Author notes
                [* ]Correspondence: hirasawa.makoto.n4@ 123456daiichisankyo.co.jp ; Tel.: +81-33-492-3131
                Author information
                https://orcid.org/0000-0003-0094-2543
                https://orcid.org/0000-0003-0668-8486
                Article
                ijms-19-01660
                10.3390/ijms19061660
                6032195
                29867033
                d5bbcdf8-c0ad-4bdb-bb89-ec78fad63257
                © 2018 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 14 May 2018
                : 29 May 2018
                Categories
                Article

                Molecular biology
                nevirapine,hla (human leukocyte antigen),hepatic hypersensitivity reaction,idiosyncratic drug toxicity,md (molecular dynamics) simulation

                Comments

                Comment on this article