0
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Bempedoic Acid for Heterozygous Familial Hypercholesterolemia: From Bench to Bedside

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Bempedoic acid is a first-in-class, oral, inhibitor of cholesterol biosynthesis that is approved for use in patients with atherosclerotic cardiovascular disease (ASCVD) and for primary prevention in individuals with heterozygous familial hypercholesterolemia (HeFH) by the United States Food and Drug Administration. Pooled data from the phase III clinical trials, CLEAR Harmony and CLEAR Wisdom, have demonstrated the safety and efficacy of bempedoic acid with regard to lowering of low-density lipoprotein cholesterol (LDL-C) in patients with HeFH as an adjunct or alternative to currently existing lipid-lowering therapies. CLEAR Outcomes is a cardiovascular outcomes trial that is currently underway that will provide additional insight as to where bempedoic acid will fit into treatment regimens among the non-statin lipid-lowering therapy options. Patients who might particularly benefit from bempedoic acid are those with HeFH and those unable to take adequate doses of statins or take any statin therapy altogether who need additional LDL-C lowering. In this review, we will discuss the profile of bempedoic acid from its design, development, and its place in therapy for the management of LDL-C for the purposes of ASCVD prevention.

          Related collections

          Most cited references 30

          • Record: found
          • Abstract: found
          • Article: not found

          Antiinflammatory Therapy with Canakinumab for Atherosclerotic Disease.

          Experimental and clinical data suggest that reducing inflammation without affecting lipid levels may reduce the risk of cardiovascular disease. Yet, the inflammatory hypothesis of atherothrombosis has remained unproved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Low-density lipoproteins cause atherosclerotic cardiovascular disease. 1. Evidence from genetic, epidemiologic, and clinical studies. A consensus statement from the European Atherosclerosis Society Consensus Panel

            Abstract Aims To appraise the clinical and genetic evidence that low-density lipoproteins (LDLs) cause atherosclerotic cardiovascular disease (ASCVD). Methods and results We assessed whether the association between LDL and ASCVD fulfils the criteria for causality by evaluating the totality of evidence from genetic studies, prospective epidemiologic cohort studies, Mendelian randomization studies, and randomized trials of LDL-lowering therapies. In clinical studies, plasma LDL burden is usually estimated by determination of plasma LDL cholesterol level (LDL-C). Rare genetic mutations that cause reduced LDL receptor function lead to markedly higher LDL-C and a dose-dependent increase in the risk of ASCVD, whereas rare variants leading to lower LDL-C are associated with a correspondingly lower risk of ASCVD. Separate meta-analyses of over 200 prospective cohort studies, Mendelian randomization studies, and randomized trials including more than 2 million participants with over 20 million person-years of follow-up and over 150 000 cardiovascular events demonstrate a remarkably consistent dose-dependent log-linear association between the absolute magnitude of exposure of the vasculature to LDL-C and the risk of ASCVD; and this effect appears to increase with increasing duration of exposure to LDL-C. Both the naturally randomized genetic studies and the randomized intervention trials consistently demonstrate that any mechanism of lowering plasma LDL particle concentration should reduce the risk of ASCVD events proportional to the absolute reduction in LDL-C and the cumulative duration of exposure to lower LDL-C, provided that the achieved reduction in LDL-C is concordant with the reduction in LDL particle number and that there are no competing deleterious off-target effects. Conclusion Consistent evidence from numerous and multiple different types of clinical and genetic studies unequivocally establishes that LDL causes ASCVD.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Berberine suppresses proinflammatory responses through AMPK activation in macrophages.

              Berberine (BBR) has been shown to improve several metabolic disorders, such as obesity, type 2 diabetes, and dyslipidemia, by stimulating AMP-activated protein kinase (AMPK). However, the effects of BBR on proinflammatory responses in macrophages are poorly understood. Here we show that BBR represses proinflammatory responses through AMPK activation in macrophages. In adipose tissue of obese db/db mice, BBR treatment significantly downregulated the expression of proinflammatory genes such as TNF-alpha, IL-1beta, IL-6, monocyte chemoattractant protein-1 (MCP-1), inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2). Consistently, BBR inhibited LPS-induced expression of proinflammatory genes including IL-1beta, IL-6, iNOS, MCP-1, COX-2, and matrix metalloprotease-9 in peritoneal macrophages and RAW 264.7 cells. Upon various proinflammatory signals including LPS, free fatty acids, and hydrogen peroxide, BBR suppressed the phosphorylation of MAPKs, such as p38, ERK, and JNK, and the level of reactive oxygen species in macrophages. Moreover, these inhibitory effects of BBR on proinflammatory responses were abolished by AMPK inhibition via either compound C, an AMPK inhibitor, or dominant-negative AMPK, implying that BBR would downregulate proinflammatory responses in macrophages via AMPK stimulation.
                Bookmark

                Author and article information

                Journal
                Drug Des Devel Ther
                Drug Des Devel Ther
                dddt
                dddt
                Drug Design, Development and Therapy
                Dove
                1177-8881
                10 May 2021
                2021
                : 15
                : 1955-1963
                Affiliations
                [1 ]Division of Cardiology, Baylor Scott and White Health, Heart Hospital Baylor Plano , Plano, TX, USA
                [2 ]Ciccarone Center for the Prevention of Cardiovascular Disease, Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine , Baltimore, MD, USA
                [3 ]Division of Endocrinology, Metabolism and Lipid Research, Washington University School of Medicine , St. Louis, MO, USA
                Author notes
                Correspondence: Erin D Michos Ciccarone Center for the Prevention of Cardiovascular Disease, Johns Hopkins Hospital , 600 N. Wolfe Street, Blalock 524-B, Baltimore, MD, 21287, USATel +410-502-6813 Email edonnell@jhmi.edu
                Article
                251865
                10.2147/DDDT.S251865
                8121276
                34007155
                © 2021 Agarwala et al.

                This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License ( http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms ( https://www.dovepress.com/terms.php).

                Page count
                Figures: 2, Tables: 4, References: 42, Pages: 9
                Funding
                Funded by: the Amato Fund;
                Dr Michos is supported by the Amato Fund for Women’s Health research at Johns Hopkins University.
                Categories
                Review

                Comments

                Comment on this article