12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Do All Opioid Drugs Share the Same Immunomodulatory Properties? A Review From Animal and Human Studies

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Suppression of the immune system has been constantly reported in the last years as a classical side effect of opioid drugs. Most of the studies on the immunological properties of opioids refer to morphine. Although morphine remains the “reference molecule,” other semisynthetic and synthetic opioids are frequently used in the clinical practice. The primary objective of this review is to analyze the available literature on the immunomodulating properties of opioid drugs different from morphine in preclinical models and in the human. A search strategy was conducted in PubMed, Embase, and the Cochrane databases using the terms “immunosuppression,” “immune system,” “opioids,” “Natural killer cells,” “cytokines,” and “lymphocytes.” The results achieved concerning the effects of fentanyl, methadone, oxycodone, buprenorphine, remifentanil, tramadol, and tapentadol on immune responses in animal studies, in healthy volunteers and in patients are reported. With some limitations due to the different methods used to measure immune system parameters, the large range of opioid doses and the relatively scarce number of participants in the available studies, we conclude that it is not correct to generalize immunosuppression as a common side effect of all opioid molecules.

          Related collections

          Most cited references90

          • Record: found
          • Abstract: found
          • Article: not found

          Opioid drug abuse and modulation of immune function: consequences in the susceptibility to opportunistic infections.

          Infection rate among intravenous drug users (IDU) is higher than the general public, and is the major cause of morbidity and hospitalization in the IDU population. Epidemiologic studies provide data on increased prevalence of opportunistic bacterial infections such as TB and pneumonia, and viral infections such as HIV-1 and hepatitis in the IDU population. An important component in the intravenous drug abuse population and in patients receiving medically indicated chronic opioid treatment is opioid withdrawal. Data on bacterial virulence in the context of opioid withdrawal suggest that mice undergoing withdrawal had shortened survival and increased bacterial load in response to Salmonella infection. As the body of evidence in support of opioid dependency and its immunosuppressive effects is growing, it is imperative to understand the mechanisms by which opioids exert these effects and identify the populations at risk that would benefit the most from the interventions to counteract opioid immunosuppressive effects. Thus, it is important to refine the existing animal model to closely match human conditions and to cross-validate these findings through carefully controlled human studies. Better understanding of the mechanisms will facilitate the search for new therapeutic modalities to counteract adverse effects including increased infection rates. This review will summarize the effects of morphine on innate and adaptive immunity, identify the role of the mu opioid receptor in these functions and the signal transduction activated in the process. The role of opioid withdrawal in immunosuppression and the clinical relevance of these findings will also be discussed.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The effects of tramadol and morphine on immune responses and pain after surgery in cancer patients.

            There has been growing interest in determining the possible immune consequences of opioid administration for the management of postoperative pain. We studied the effects of morphine and tramadol on pain and immune function during the postoperative period in 30 patients undergoing abdominal surgery for uterine carcinoma. Phytohemoagglutinin-induced T lymphocyte proliferation and natural killer cell activity were evaluated immediately before and after surgery, and 2 h after the acute administration of either 10 mg of morphine IM or 100 mg tramadol IM for pain. In all patients, phytohemagglutinin-induced lymphoproliferation was significantly depressed by surgical stress. However, in the morphine-treated group, proliferative values remained lower than basal levels for 2 h after treatment, whereas in tramadol-administered patients proliferative values returned to basal levels. Natural killer cell activity was not significantly affected by surgery nor by morphine administration, whereas tramadol significantly enhanced the activity of natural killer cells. Both drugs produced a comparable reduction in postoperative pain. We conclude that, as previously observed in the experimental animal, tramadol and morphine, when administered in analgesic doses, induce different immune effects. Recent studies suggest that opioids can have an adverse impact on the immune system. Because surgical stress also induces immune dysfunction, the search for analgesic drugs devoid of immunosuppressive effects is of import. This study compared the effects on immune responses of morphine and of the atypical opioid analgesic, tramadol, given for postoperative pain to gynecological cancer patients. Tramadol and morphine showed comparable analgesic activity; however, tramadol, in contrast to morphine, induced an improvement of postoperative immunosuppression and, therefore, may be preferred to morphine for the treatment of postoperative pain.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found

              Effects of Fentanyl on Natural Killer Cell Activity and on Resistance to Tumor Metastasis in Rats

              Objectives: Opiates, which serve an integral role in anesthesia, suppress immune function, particularly natural killer cell cytotoxicity (NKCC). NK cells play an important role in tumor and metastasis surveillance. We reported that large-dose fentanyl anesthesia induced prolonged suppression of NKCC in patients undergoing abdominal surgery. The immune modulatory effects of opiates may depend on the interaction between dose and time of administration. The present study examined the effects of different doses of fentanyl, administered at different time points relative to tumor inoculation, on NKCC and on experimental tumor metastasis in rats. Methods: Fischer 344 rats were injected with low or high doses of fentanyl, 6 or 2 h before, simultaneously with or 1 h after being inoculated intravenously with MADB106 tumor cells. Lung tumor retention (LTR) was assessed 4 h after, and lung tumor metastases were counted 3 weeks after tumor inoculation. NKCC was assessed 1 h after the fentanyl injection. Results: At all time points, except 6 h before tumor inoculation, fentanyl (0.1–0.3 mg/kg) induced a dose-dependent increase in MADB106 LTR (2.3- to 74-fold). An intermediate dose of fentanyl (0.15 mg/kg) doubled the number of lung metastasis, and, within animal, suppressed NKCC and increased MADB106 LTR in a correlated manner. Conclusion: These findings indicate that fentanyl suppresses NKCC and increases the risk of tumor metastasis. Suppression of NK cells at a time when surgery may induce tumor dissemination can prove to be critical to the spread of metastases. It is suggested that the acute administration of a moderate dose of opiates during surgery should be applied cautiously, particularly in cancer patients.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Immunol
                Front Immunol
                Front. Immunol.
                Frontiers in Immunology
                Frontiers Media S.A.
                1664-3224
                12 December 2019
                2019
                : 10
                : 2914
                Affiliations
                Department of Pharmacological and Biomolecular Sciences, University of Milano , Milan, Italy
                Author notes

                Edited by: Sabita Roy, University of Miami, United States

                Reviewed by: Daniel Scott-Algara, Institut Pasteur, France; Mary A. Markiewicz, University of Kansas Medical Center, United States

                *Correspondence: Paola Sacerdote paola.sacerdote@ 123456unimi.it

                This article was submitted to Inflammation, a section of the journal Frontiers in Immunology

                Article
                10.3389/fimmu.2019.02914
                6920107
                31921173
                d5bccd9e-87c2-4e1a-99ba-62511f5954f5
                Copyright © 2019 Franchi, Moschetti, Amodeo and Sacerdote.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 15 July 2019
                : 27 November 2019
                Page count
                Figures: 1, Tables: 1, Equations: 0, References: 96, Pages: 11, Words: 9483
                Categories
                Immunology
                Review

                Immunology
                morphine,immunosuppression,fentanyl,buprenophine,oxycodone,methadone,tramadol,tapentadol
                Immunology
                morphine, immunosuppression, fentanyl, buprenophine, oxycodone, methadone, tramadol, tapentadol

                Comments

                Comment on this article

                scite_

                Similar content526

                Cited by44

                Most referenced authors804