+1 Recommend
1 collections
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Formulation, Characterization And Evaluation Of Curcumin- Loaded PLGA- TPGS Nanoparticles For Liver Cancer Treatment

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.



          Liver cancer is a major health problem facing mankind. Currently, the focus of research is to improve the treatment of liver cancer using a variety of treatment options such as providing chemotherapy drugs through nanocarriers.


          The aim of this study was to prepare a curcumin-loaded (PLGA/TPGS) NPs delivery system by the emulsification-solvent evaporation method in order to achieve synergistic antitumor activity against liver cancer.


          Curcumin-loaded (PLGA/TPGS) NPs were prepared by the emulsification and solvent evaporation method. The physical and chemical characteristics of NPs such as size, morphology, and release profiles were discussed. In vitro and in vivo studies were carried out to evaluate its anti-tumor activity in target cells.


          Curcumin-loaded (PLGA/TPGS) NPs could be successfully internalized by HepG2 cells and play a synergistic role in inhibiting the growth of hepatocellular carcinoma cells. They exhibited high target organ accumulation, superior antitumor efficiency, and lower toxicity in vivo.


          The present study indicates that the curcumin-loaded (PLGA/TPGS) NPs provide a promising platform for the treatment of liver cancer.

          Related collections

          Most cited references 29

          • Record: found
          • Abstract: not found
          • Article: not found

          A simple equation for description of solute release II. Fickian and anomalous release from swellable devices

            • Record: found
            • Abstract: found
            • Article: not found

            Targeted therapies for hepatocellular carcinoma.

            Unlike most solid tumors, the incidence and mortality of hepatocellular carcinoma (HCC) have increased in the United States and Europe in the past decade. Most patients are diagnosed at advanced stages, so there is an urgent need for new systemic therapies. Sorafenib, a tyrosine kinase inhibitor (TKI), has shown clinical efficacy in patients with HCC. Studies in patients with lung, breast, or colorectal cancers have indicated that the genetic heterogeneity of cancer cells within a tumor affect its response to therapeutics designed to target specific molecules. When tumor progression requires alterations in specific oncogenes (oncogene addiction), drugs that selectively block their products might slow tumor growth. However, no specific oncogene addictions are yet known to be implicated in HCC progression, so it is important to improve our understanding of its molecular pathogenesis. There are currently many clinical trials evaluating TKIs for HCC, including those tested in combination with (eg, erlotinib) or compared with (eg, linifanib) sorafenib as a first-line therapy. For patients who do not respond or are intolerant to sorafenib, TKIs such as brivanib, everolimus, and monoclonal antibodies (eg, ramucirumab) are being tested as second-line therapies. There are early stage trials investigating the efficacy for up to 60 reagents for HCC. Together, these studies might change the management strategy for HCC, and combination therapies might be developed for patients with advanced HCC. Identification of oncogenes that mediate tumor progression, and trials that monitor their products as biomarkers, might lead to personalized therapy; reagents that interfere with signaling pathways required for HCC progression might be used to treat selected populations, and thereby maximize the efficacy and cost benefit. Copyright © 2011 AGA Institute. Published by Elsevier Inc. All rights reserved.
              • Record: found
              • Abstract: found
              • Article: not found

              The applications of Vitamin E TPGS in drug delivery.

              D-α-Tocopheryl polyethylene glycol 1000 succinate (simply TPGS or Vitamin E TPGS) is formed by the esterification of Vitamin E succinate with polyethylene glycol 1000. As novel nonionic surfactant, it exhibits amphipathic properties and can form stable micelles in aqueous vehicles at concentration as low as 0.02 wt%. It has been widely investigated for its emulsifying, dispersing, gelling, and solubilizing effects on poorly water-soluble drugs. It can also act as a P-glycoprotein (P-gp) inhibitor and has been served as an excipient for overcoming multidrug resistance (MDR) and for increasing the oral bioavailability of many anticancer drugs. Since TPGS has been approved by FDA as a safe pharmaceutic adjuvant, many TPGS-based drug delivery systems (DDS) have been developed. In this review, we discuss TPGS properties as a P-gp inhibitor, solubilizer/absorption and permeation enhancer in drug delivery and TPGS-related formulations such as nanocrystals, nanosuspensions, tablets/solid dispersions, adjuvant in vaccine systems, nutrition supplement, plasticizer of film, anticancer reagent and so on. This review will greatly impact and bring out new insights in the use of TPGS in DDS. Copyright © 2013 Elsevier B.V. All rights reserved.

                Author and article information

                Drug Des Devel Ther
                Drug Des Devel Ther
                Drug Design, Development and Therapy
                16 October 2019
                : 13
                : 3569-3578
                [1 ]Department of Oncology, Beibei District Hospital of Traditional Chinese Medicine , Chongqing, People’s Republic of China
                Author notes
                Correspondence: Yi LiBeibei District Hospital of Traditional Chinese Medicine , No. 380, General Road, Beibei District, Chongqing400711, People’s Republic of ChinaTel/fax +86 23 68863618 Email yili2a@sina.com
                © 2019 Chen et al.

                This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License ( http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms ( https://www.dovepress.com/terms.php).

                Page count
                Figures: 7, Tables: 4, References: 37, Pages: 10
                Original Research

                Pharmacology & Pharmaceutical medicine

                liver cancer, nanoparticles, tpgs, plga, curcumin


                Comment on this article