12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The design of novel inhibitors for treating cancer by targeting CDC25B through disruption of CDC25B-CDK2/Cyclin A interaction using computational approaches

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Cell division cycle 25B is a key cell cycle regulator and widely considered as potent clinical drug target for cancers. This research focused on identifying potential compounds in theory which are able to disrupt transient interactions between CDC25B and its CDK2/Cyclin A substrate.

          By using the method of ZDOCK and RDOCK, the most optimized 3D structure of CDK2/Cyclin A in complex with CDC25B was constructed and validated using two methods: 1) the superimposition of proteins; 2) analysis of the hydrogen bond distances of Arg 488(N1)-Asp 206(OD1), Arg 492(NE)-Asp 206(OD1), Arg 492(N1)-Asp 206(OD2) and Tyr 497(NE)-Asp 210(OD1). A series of new compounds was gained through searching the fragment database derived from ZINC based on the known inhibitor-compound 7 by the means of “replace fragment” technique. The compounds acquired via meeting the requirements of the absorption, distribution, metabolism, and excretion (ADME) predictions. Finally, 12 compounds with better binding affinity were identified. The comp#1, as a representative, was selected to be synthesized and assayed for their CDC25B inhibitory activities. The comp#1 exhibited mild inhibitory activities against human CDC25B with IC 50 values at about 39.02 μM. Molecular Dynamic (MD) simulation revealed that the new inhibitor-comp#1 had favorable conformations for binding to CDC25B and disturbing the interactions between CDC25B and CDK2/Cyclin A.

          Related collections

          Most cited references50

          • Record: found
          • Abstract: found
          • Article: not found

          ZDOCK: an initial-stage protein-docking algorithm.

          The development of scoring functions is of great importance to protein docking. Here we present a new scoring function for the initial stage of unbound docking. It combines our recently developed pairwise shape complementarity with desolvation and electrostatics. We compare this scoring function with three other functions on a large benchmark of 49 nonredundant test cases and show its superior performance, especially for the antibody-antigen category of test cases. For 44 test cases (90% of the benchmark), we can retain at least one near-native structure within the top 2000 predictions at the 6 degrees rotational sampling density, with an average of 52 near-native structures per test case. The remaining five difficult test cases can be explained by a combination of poor binding affinity, large backbone conformational changes, and our algorithm's strong tendency for identifying large concave binding pockets. All four scoring functions have been integrated into our Fast Fourier Transform based docking algorithm ZDOCK, which is freely available to academic users at http://zlab.bu.edu/~ rong/dock. Copyright 2003 Wiley-Liss, Inc.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Prediction of drug absorption using multivariate statistics.

            Literature data on compounds both well- and poorly-absorbed in humans were used to build a statistical pattern recognition model of passive intestinal absorption. Robust outlier detection was utilized to analyze the well-absorbed compounds, some of which were intermingled with the poorly-absorbed compounds in the model space. Outliers were identified as being actively transported. The descriptors chosen for inclusion in the model were PSA and AlogP98, based on consideration of the physical processes involved in membrane permeability and the interrelationships and redundancies between available descriptors. These descriptors are quite straightforward for a medicinal chemist to interpret, enhancing the utility of the model. Molecular weight, while often used in passive absorption models, was shown to be superfluous, as it is already a component of both PSA and AlogP98. Extensive validation of the model on hundreds of known orally delivered drugs, "drug-like" molecules, and Pharmacopeia, Inc. compounds, which had been assayed for Caco-2 cell permeability, demonstrated a good rate of successful predictions (74-92%, depending on the dataset and exact criterion used).
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Role of quinones in toxicology.

              Quinones represent a class of toxicological intermediates which can create a variety of hazardous effects in vivo, including acute cytotoxicity, immunotoxicity, and carcinogenesis. The mechanisms by which quinones cause these effects can be quite complex. Quinones are Michael acceptors, and cellular damage can occur through alkylation of crucial cellular proteins and/or DNA. Alternatively, quinones are highly redox active molecules which can redox cycle with their semiquinone radicals, leading to formation of reactive oxygen species (ROS), including superoxide, hydrogen peroxide, and ultimately the hydroxyl radical. Production of ROS can cause severe oxidative stress within cells through the formation of oxidized cellular macromolecules, including lipids, proteins, and DNA. Formation of oxidatively damaged bases such as 8-oxodeoxyguanosine has been associated with aging and carcinogenesis. Furthermore, ROS can activate a number of signaling pathways, including protein kinase C and RAS. This review explores the varied cytotoxic effects of quinones using specific examples, including quinones produced from benzene, polycyclic aromatic hydrocarbons, estrogens, and catecholamines. The evidence strongly suggests that the numerous mechanisms of quinone toxicity (i.e., alkylation vs oxidative stress) can be correlated with the known pathology of the parent compound(s).
                Bookmark

                Author and article information

                Journal
                Oncotarget
                Oncotarget
                Oncotarget
                ImpactJ
                Oncotarget
                Impact Journals LLC
                1949-2553
                16 May 2017
                27 March 2017
                : 8
                : 20
                : 33225-33240
                Affiliations
                1 Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, China
                2 Eye Hospital, Tianjin Medical University, School of Optometry and Ophthalmology, Tianjin Medical University, Tianjin, China
                Author notes
                Correspondence to: Wei-Li Dong, dongweili@ 123456tmu.edu.cn
                Article
                16600
                10.18632/oncotarget.16600
                5464863
                28402259
                d5ccbef4-8b5d-430f-81ad-ee73d2b20312
                Copyright: © 2017 Li et al.

                This article is distributed under the terms of the Creative Commons Attribution License (CC-BY), which permits unrestricted use and redistribution provided that the original author and source are credited.

                History
                : 4 February 2017
                : 17 March 2017
                Categories
                Research Paper

                Oncology & Radiotherapy
                cdc25b,zdock,rdock,replace fragment,molecular dynamic simulation
                Oncology & Radiotherapy
                cdc25b, zdock, rdock, replace fragment, molecular dynamic simulation

                Comments

                Comment on this article