73
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Digital eye strain: prevalence, measurement and amelioration

      review-article
      ,
      BMJ Open Ophthalmology
      BMJ Publishing Group
      vision, optics and refraction, ocular surface, medical education

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Digital device usage has increased substantially in recent years across all age groups, so that extensive daily use for both social and professional purposes is now normal. Digital eye strain (DES), also known as computer vision syndrome, encompasses a range of ocular and visual symptoms, and estimates suggest its prevalence may be 50% or more among computer users. Symptoms fall into two main categories: those linked to accommodative or binocular vision stress, and external symptoms linked to dry eye. Although symptoms are typically transient, they may be frequent and persistent, and have an economic impact when vocational computer users are affected. DES may be identified and measured using one of several available questionnaires, or objective evaluations of parameters such as critical flicker–fusion frequency, blink rate and completeness, accommodative function and pupil characteristics may be used to provide indices of visual fatigue. Correlations between objective and subjective measures are not always apparent. A range of management approaches exist for DES including correction of refractive error and/or presbyopia, management of dry eye, incorporating regular screen breaks and consideration of vergence and accommodative problems. Recently, several authors have explored the putative role of blue light-filtering spectacle lenses on treating DES, with mixed results. Given the high prevalence of DES and near-universal use of digital devices, it is essential that eye care practitioners are able to provide advice and management options based on quality research evidence.

          Related collections

          Most cited references83

          • Record: found
          • Abstract: found
          • Article: not found

          The epidemiology of dry eye disease: report of the Epidemiology Subcommittee of the International Dry Eye WorkShop (2007).

          (2007)
          The report of the Epidemiology Subcommittee of the 2007 Dry Eye WorkShop summarizes current knowledge on the epidemiology of dry eye disease, providing prevalence and incidence data from various populations. It stresses the need to expand epidemiological studies to additional geographic regions, to incorporate multiple races and ethnicities in future studies, and to build a consensus on dry eye diagnostic criteria for epidemiological studies. Recommendations are made regarding several characteristics of dry eye questionnaires that might be suitable for use in epidemiological studies and randomized controlled clinical trials. Risk factors for dry eye and morbidity of the disease are identified, and the impact of dry eye disease on quality of life and visual function are outlined. Suggestions are made for further prospective research that would lead to improvement of both eye and general public health.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Evening exposure to a light-emitting diodes (LED)-backlit computer screen affects circadian physiology and cognitive performance.

            Many people spend an increasing amount of time in front of computer screens equipped with light-emitting diodes (LED) with a short wavelength (blue range). Thus we investigated the repercussions on melatonin (a marker of the circadian clock), alertness, and cognitive performance levels in 13 young male volunteers under controlled laboratory conditions in a balanced crossover design. A 5-h evening exposure to a white LED-backlit screen with more than twice as much 464 nm light emission {irradiance of 0,241 Watt/(steradian × m(2)) [W/(sr × m(2))], 2.1 × 10(13) photons/(cm(2) × s), in the wavelength range of 454 and 474 nm} than a white non-LED-backlit screen [irradiance of 0,099 W/(sr × m(2)), 0.7 × 10(13) photons/(cm(2) × s), in the wavelength range of 454 and 474 nm] elicited a significant suppression of the evening rise in endogenous melatonin and subjective as well as objective sleepiness, as indexed by a reduced incidence of slow eye movements and EEG low-frequency activity (1-7 Hz) in frontal brain regions. Concomitantly, sustained attention, as determined by the GO/NOGO task; working memory/attention, as assessed by "explicit timing"; and declarative memory performance in a word-learning paradigm were significantly enhanced in the LED-backlit screen compared with the non-LED condition. Screen quality and visual comfort were rated the same in both screen conditions, whereas the non-LED screen tended to be considered brighter. Our data indicate that the spectral profile of light emitted by computer screens impacts on circadian physiology, alertness, and cognitive performance levels. The challenge will be to design a computer screen with a spectral profile that can be individually programmed to add timed, essential light information to the circadian system in humans.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Effects of blue light on the circadian system and eye physiology

              Light-emitting diodes (LEDs) have been used to provide illumination in industrial and commercial environments. LEDs are also used in TVs, computers, smart phones, and tablets. Although the light emitted by most LEDs appears white, LEDs have peak emission in the blue light range (400–490 nm). The accumulating experimental evidence has indicated that exposure to blue light can affect many physiologic functions, and it can be used to treat circadian and sleep dysfunctions. However, blue light can also induce photoreceptor damage. Thus, it is important to consider the spectral output of LED-based light sources to minimize the danger that may be associated with blue light exposure. In this review, we summarize the current knowledge of the effects of blue light on the regulation of physiologic functions and the possible effects of blue light exposure on ocular health.
                Bookmark

                Author and article information

                Journal
                BMJ Open Ophthalmol
                BMJ Open Ophthalmol
                bmjophth
                bmjophth
                BMJ Open Ophthalmology
                BMJ Publishing Group (BMA House, Tavistock Square, London, WC1H 9JR )
                2397-3269
                2018
                16 April 2018
                : 3
                : 1
                : e000146
                Affiliations
                [1] departmentSchool of Life and Health Sciences , Aston University , Birmingham, UK
                Author notes
                [Correspondence to ] Dr Amy L Sheppard; A.SHEPPARD@ 123456aston.ac.uk
                Author information
                http://orcid.org/0000-0003-0035-8267
                http://orcid.org/0000-0003-4673-8927
                Article
                bmjophth-2018-000146
                10.1136/bmjophth-2018-000146
                6020759
                29963645
                d5dd615e-9e4d-413f-b809-215f4160db9f
                © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

                This is an Open Access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/

                History
                : 12 January 2018
                : 16 March 2018
                : 27 March 2018
                Categories
                Review
                1506
                2352
                1357
                Custom metadata
                unlocked

                vision,optics and refraction,ocular surface,medical education

                Comments

                Comment on this article