10
views
0
recommends
+1 Recommend
2 collections
    0
    shares

      Publish your biodiversity research with us!

      Submit your article here.

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Influences of the area, shape and connectivity of coastal lakes on the taxonomic and functional diversity of fish communities in Southern Brazil

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          ABSTRACT In this study we investigated the influence of landscape variables on the alpha taxonomic and functional diversity of fish communities in coastal lakes. We built an analytical framework that included possible causal connections among variables, which we analyzed using path analysis. We obtained landscape metrics for the area, shape and connectivity (estuary connectivity and primary connectivity to neighboring lakes) of 37 coastal lakes in the Tramandaí River Basin. We collected fish data from 49 species using standardized sampling with gillnets and obtained a set of traits related to dispersal abilities and food acquisition. The model that best explained the taxonomic diversity and functional richness took into account the shape of the lakes. Functional richness was also explained by estuary connectivity. Functional evenness and dispersion were not predicted by area or connectivity, but they were influenced by the abundant freshwater species. This indicates that all lakes support most of the regional functional diversity. The results highlight the importance of the dispersal process in this lake system and allow the conclusion that considering multiple diversity dimensions can aid the conservation of local and regional fish communities.

          Related collections

          Most cited references87

          • Record: found
          • Abstract: found
          • Article: not found

          New multidimensional functional diversity indices for a multifaceted framework in functional ecology.

          Functional diversity is increasingly identified as an important driver of ecosystem functioning. Various indices have been proposed to measure the functional diversity of a community, but there is still no consensus on which are most suitable. Indeed, none of the existing indices meets all the criteria required for general use. The main criteria are that they must be designed to deal with several traits, take into account abundances, and measure all the facets of functional diversity. Here we propose three indices to quantify each facet of functional diversity for a community with species distributed in a multidimensional functional space: functional richness (volume of the functional space occupied by the community), functional evenness (regularity of the distribution of abundance in this volume), and functional divergence (divergence in the distribution of abundance in this volume). Functional richness is estimated using the existing convex hull volume index. The new functional evenness index is based on the minimum spanning tree which links all the species in the multidimensional functional space. Then this new index quantifies the regularity with which species abundances are distributed along the spanning tree. Functional divergence is measured using a novel index which quantifies how species diverge in their distances (weighted by their abundance) from the center of gravity in the functional space. We show that none of the indices meets all the criteria required for a functional diversity index, but instead we show that the set of three complementary indices meets these criteria. Through simulations of artificial data sets, we demonstrate that functional divergence and functional evenness are independent of species richness and that the three functional diversity indices are independent of each other. Overall, our study suggests that decomposition of functional diversity into its three primary components provides a meaningful framework for its quantification and for the classification of existing functional diversity indices. This decomposition has the potential to shed light on the role of biodiversity on ecosystem functioning and on the influence of biotic and abiotic filters on the structure of species communities. Finally, we propose a general framework for applying these three functional diversity indices.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A distance-based framework for measuring functional diversity from multiple traits

            A new framework for measuring functional diversity (FD) from multiple traits has recently been proposed. This framework was mostly limited to quantitative traits without missing values and to situations in which there are more species than traits, although the authors had suggested a way to extend their framework to other trait types. The main purpose of this note is to further develop this suggestion. We describe a highly flexible distance-based framework to measure different facets of FD in multidimensional trait space from any distance or dissimilarity measure, any number of traits, and from different trait types (i.e., quantitative, semi-quantitative, and qualitative). This new approach allows for missing trait values and the weighting of individual traits. We also present a new multidimensional FD index, called functional dispersion (FDis), which is closely related to Rao's quadratic entropy. FDis is the multivariate analogue of the weighted mean absolute deviation (MAD), in which the weights are species relative abundances. For unweighted presence-absence data, FDis can be used for a formal statistical test of differences in FD. We provide the "FD" R language package to easily implement our distance-based FD framework.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Beta Regression for Modelling Rates and Proportions

                Bookmark

                Author and article information

                Contributors
                Role: ND
                Role: ND
                Role: ND
                Role: ND
                Role: ND
                Role: ND
                Journal
                zool
                Zoologia (Curitiba)
                Zoologia (Curitiba)
                Sociedade Brasileira de Zoologia (Curitiba, PR, Brazil )
                1984-4670
                1984-4689
                2019
                : 36
                : e23539
                Affiliations
                [1] Porto Alegre Rio Grande do Sul orgnameUniversidade Federal do Rio Grande do Sul orgdiv1Departamento de Ecologia Brazil
                [3] Curitiba Paraná orgnameUniversidade Federal do Paraná orgdiv1Setor de Ciências Biológicas orgdiv2Programa de Pós-Graduação em Ecologia e Conservação Brazil
                [2] Porto Alegre Rio Grande do Sul orgnameUniversidade Federal do Rio Grande do Sul orgdiv1Programa de Pós-Graduação em Ecologia Brazil
                Article
                S1984-46702019000100316
                10.3897/zoologia.36.e23539
                d5f009ef-fff7-4c8b-ab84-9653e7baa134

                This work is licensed under a Creative Commons Attribution 4.0 International License.

                History
                : 27 November 2018
                : 12 January 2018
                Page count
                Figures: 0, Tables: 0, Equations: 0, References: 94, Pages: 0
                Product

                SciELO Brazil

                Categories
                Research Article

                Alpha diversity,environmental filters,limiting similarity,neutral paradigm,geographic information system

                Comments

                Comment on this article