4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Synthesis of Block Copolymers by Combination of Atom Transfer Radical Polymerization and Visible Light-Induced Free Radical Promoted Cationic Polymerization

      , ,
      Macromolecular Rapid Communications
      Wiley-Blackwell

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references48

          • Record: found
          • Abstract: found
          • Article: not found

          Polymer vesicles.

          Vesicles are microscopic sacs that enclose a volume with a molecularly thin membrane. The membranes are generally self-directed assemblies of amphiphilic molecules with a dual hydrophilic-hydrophobic character. Biological amphiphiles form vesicles central to cell function and are principally lipids of molecular weight less than 1 kilodalton. Block copolymers that mimic lipid amphiphilicity can also self-assemble into vesicles in dilute solution, but polymer molecular weights can be orders of magnitude greater than those of lipids. Structural features of vesicles, as well as properties including stability, fluidity, and intermembrane dynamics, are greatly influenced by characteristics of the polymers. Future applications of polymer vesicles will rely on exploiting unique property-performance relations, but results to date already underscore the fact that biologically derived vesicles are but a small subset of what is physically and chemically possible.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The dawning era of polymer therapeutics.

            As we enter the twenty-first century, research at the interface of polymer chemistry and the biomedical sciences has given rise to the first nano-sized (5-100 nm) polymer-based pharmaceuticals, the 'polymer therapeutics'. Polymer therapeutics include rationally designed macromolecular drugs, polymer-drug and polymer-protein conjugates, polymeric micelles containing covalently bound drug, and polyplexes for DNA delivery. The successful clinical application of polymer-protein conjugates, and promising clinical results arising from trials with polymer-anticancer-drug conjugates, bode well for the future design and development of the ever more sophisticated bio-nanotechnologies that are needed to realize the full potential of the post-genomic age.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Nanomedicine: current status and future prospects.

              Applications of nanotechnology for treatment, diagnosis, monitoring, and control of biological systems has recently been referred to as "nanomedicine" by the National Institutes of Health. Research into the rational delivery and targeting of pharmaceutical, therapeutic, and diagnostic agents is at the forefront of projects in nanomedicine. These involve the identification of precise targets (cells and receptors) related to specific clinical conditions and choice of the appropriate nanocarriers to achieve the required responses while minimizing the side effects. Mononuclear phagocytes, dendritic cells, endothelial cells, and cancers (tumor cells, as well as tumor neovasculature) are key targets. Today, nanotechnology and nanoscience approaches to particle design and formulation are beginning to expand the market for many drugs and are forming the basis for a highly profitable niche within the industry, but some predicted benefits are hyped. This article will highlight rational approaches in design and surface engineering of nanoscale vehicles and entities for site-specific drug delivery and medical imaging after parenteral administration. Potential pitfalls or side effects associated with nanoparticles are also discussed.
                Bookmark

                Author and article information

                Journal
                Macromolecular Rapid Communications
                Macromol. Rapid Commun.
                Wiley-Blackwell
                10221336
                February 27 2012
                February 27 2012
                : 33
                : 4
                : 309-313
                Article
                10.1002/marc.201100641
                22253209
                d5f0470b-35ec-41e9-b575-149acbff7659
                © 2012

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article