35
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Bioactive Components in Fish Venoms

      review-article
      * , *
      Toxins
      MDPI
      fish venom, venom proteins, venom peptides, pharmacology, pore forming toxins, stonefish toxins

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Animal venoms are widely recognized excellent resources for the discovery of novel drug leads and physiological tools. Most are comprised of a large number of components, of which the enzymes, small peptides, and proteins are studied for their important bioactivities. However, in spite of there being over 2000 venomous fish species, piscine venoms have been relatively underrepresented in the literature thus far. Most studies have explored whole or partially fractioned venom, revealing broad pharmacology, which includes cardiovascular, neuromuscular, cytotoxic, inflammatory, and nociceptive activities. Several large proteinaceous toxins, such as stonustoxin, verrucotoxin, and Sp-CTx, have been isolated from scorpaenoid fish. These form pores in cell membranes, resulting in cell death and creating a cascade of reactions that result in many, but not all, of the physiological symptoms observed from envenomation. Additionally, Natterins, a novel family of toxins possessing kininogenase activity have been found in toadfish venom. A variety of smaller protein toxins, as well as a small number of peptides, enzymes, and non-proteinaceous molecules have also been isolated from a range of fish venoms, but most remain poorly characterized. Many other bioactive fish venom components remain to be discovered and investigated. These represent an untapped treasure of potentially useful molecules.

          Related collections

          Most cited references168

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          EvolView, an online tool for visualizing, annotating and managing phylogenetic trees

          EvolView is a web application for visualizing, annotating and managing phylogenetic trees. First, EvolView is a phylogenetic tree viewer and customization tool; it visualizes trees in various formats, customizes them through built-in functions that can link information from external datasets, and exports the customized results to publication-ready figures. Second, EvolView is a tree and dataset management tool: users can easily organize related trees into distinct projects, add new datasets to trees and edit and manage existing trees and datasets. To make EvolView easy to use, it is equipped with an intuitive user interface. With a free account, users can save data and manipulations on the EvolView server. EvolView is freely available at: http://www.evolgenius.info/evolview.html.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Conus venoms: a rich source of novel ion channel-targeted peptides.

            The cone snails (genus Conus) are venomous marine molluscs that use small, structured peptide toxins (conotoxins) for prey capture, defense, and competitor deterrence. Each of the 500 Conus can express approximately 100 different conotoxins, with little overlap between species. An overwhelming majority of these peptides are probably targeted selectively to a specific ion channel. Because conotoxins discriminate between closely related subtypes of ion channels, they are widely used as pharmacological agents in ion channel research, and several have direct diagnostic and therapeutic potential. Large conotoxin families can comprise hundreds or thousands of different peptides; most families have a corresponding ion channel family target (i.e., omega-conotoxins and Ca channels, alpha-conotoxins and nicotinic receptors). Different conotoxin families may have different ligand binding sites on the same ion channel target (i.e., mu-conotoxins and delta-conotoxins to sites 1 and 6 of Na channels, respectively). The individual peptides in a conotoxin family are typically each selectively targeted to a diverse set of different molecular isoforms within the same ion channel family. This review focuses on the targeting specificity of conotoxins and their differential binding to different states of an ion channel.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Scorpion venom components as potential candidates for drug development

              Scorpions are well known for their dangerous stings that can result in severe consequences for human beings, including death. Neurotoxins present in their venoms are responsible for their toxicity. Due to their medical relevance, toxins have been the driving force in the scorpion natural compounds research field. On the other hand, for thousands of years, scorpions and their venoms have been applied in traditional medicine, mainly in Asia and Africa. With the remarkable growth in the number of characterized scorpion venom components, several drug candidates have been found with the potential to tackle many of the emerging global medical threats. Scorpions have become a valuable source of biologically active molecules, from novel antibiotics to potential anticancer therapeutics. Other venom components have drawn attention as useful scaffolds for the development of drugs. This review summarizes the most promising candidates for drug development that have been isolated from scorpion venoms.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                Toxins (Basel)
                Toxins (Basel)
                toxins
                Toxins
                MDPI
                2072-6651
                30 April 2015
                May 2015
                : 7
                : 5
                : 1497-1531
                Affiliations
                Institute for Molecular Bioscience, the University of Queensland, St. Lucia, QLD 4072, Australia
                Author notes
                [* ]Authors to whom correspondence should be addressed; E-Mails: r.ziegman@ 123456uq.edu.au (R.Z.); p.alewood@ 123456imb.uq.edu.au (P.A.); Tel.: +61-7-3346-2982 (R.Z. & P.A.); Fax: +61-7-3346-2101 (R.Z. & P.A.).
                Article
                toxins-07-01497
                10.3390/toxins7051497
                4448160
                25941767
                d5f10d48-035f-493d-aef1-50aba84b40be
                © 2015 by the authors; licensee MDPI, Basel, Switzerland.

                This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 08 April 2015
                : 23 April 2015
                Categories
                Review

                Molecular medicine
                fish venom,venom proteins,venom peptides,pharmacology,pore forming toxins,stonefish toxins

                Comments

                Comment on this article