18
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Effects of p35 Mutations Associated with Mental Retardation on the Cellular Function of p35-CDK5

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          p35 is an activation subunit of the cyclin-dependent kinase 5 (CDK5), which is a Ser/Thr kinase that is expressed predominantly in neurons. Disruption of the CDK5 or p35 ( CDK5R1) genes induces abnormal neuronal layering in various regions of the mouse brain via impaired neuronal migration, which may be relevant for mental retardation in humans. Accordingly, mutations in the p35 gene were reported in patients with nonsyndromic mental retardation; however, their effect on the biochemical function of p35 has not been examined. Here, we studied the biochemical effect of mutant p35 on its known properties, i.e., stability, CDK5 activation, and cellular localization, using heterologous expression in cultured cells. We also examined the effect of the mutations on axon elongation in cultured primary neurons and migration of newborn neurons in embryonic brains. However, we did not detect any significant differences in the effects of the mutant forms of p35 compared with wild-type p35. Therefore, we conclude that these p35 mutations are unlikely to cause mental retardation.

          Related collections

          Most cited references40

          • Record: found
          • Abstract: found
          • Article: not found

          Signals for sorting of transmembrane proteins to endosomes and lysosomes.

          Sorting of transmembrane proteins to endosomes and lysosomes is mediated by signals present within the cytosolic domains of the proteins. Most signals consist of short, linear sequences of amino acid residues. Some signals are referred to as tyrosine-based sorting signals and conform to the NPXY or YXXO consensus motifs. Other signals known as dileucine-based signals fit [DE]XXXL[LI] or DXXLL consensus motifs. All of these signals are recognized by components of protein coats peripherally associated with the cytosolic face of membranes. YXXO and [DE]XXXL[LI] signals are recognized with characteristic fine specificity by the adaptor protein (AP) complexes AP-1, AP-2, AP-3, and AP-4, whereas DXXLL signals are recognized by another family of adaptors known as GGAs. Several proteins, including clathrin, AP-2, and Dab2, have been proposed to function as recognition proteins for NPXY signals. YXXO and DXXLL signals bind in an extended conformation to the mu2 subunit of AP-2 and the VHS domain of the GGAs, respectively. Phosphorylation events regulate signal recognition. In addition to peptide motifs, ubiquitination of cytosolic lysine residues also serves as a signal for sorting at various stages of the endosomal-lysosomal system. Conjugated ubiquitin is recognized by UIM, UBA, or UBC domains present within many components of the internalization and lysosomal targeting machinery. This complex array of signals and recognition proteins ensures the dynamic but accurate distribution of transmembrane proteins to different compartments of the endosomal-lysosomal system.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Principles of CDK regulation.

            D Morgan (1995)
            As key regulators of the cell cycle, the cyclin-dependent kinases must be tightly regulated by extra- and intracellular signals. The activity of cyclin-dependent kinases is controlled by four highly conserved biochemical mechanisms, forming a web of regulatory pathways unmatched in its elegance and intricacy.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Phosphate-binding tag, a new tool to visualize phosphorylated proteins.

              We introduce two methods for the visualization of phosphorylated proteins using alkoxide-bridged dinuclear metal (i.e. Zn(2+) or Mn(2+)) complexes as novel phosphate-binding tag (Phos-tag) molecules. Both Zn(2+)- and Mn(2+)-Phos-tag molecules preferentially capture phosphomonoester dianions bound to Ser, Thr, and Tyr residues. One method is based on an ECL system using biotin-pendant Zn(2+)-Phos-tag and horseradish peroxidase-conjugated streptavidin. We demonstrate the electroblotting analyses of protein phosphorylation status by the phosphate-selective ECL signals. Another method is based on the mobility shift of phosphorylated proteins in SDS-PAGE with polyacrylamide-bound Mn(2+)-Phos-tag. Phosphorylated proteins in the gel are visualized as slower migration bands compared with corresponding dephosphorylated proteins. We demonstrate the kinase and phosphatase assays by phosphate affinity electrophoresis (Mn(2+)-Phos-tag SDS-PAGE).
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, CA USA )
                1932-6203
                15 October 2015
                2015
                : 10
                : 10
                : e0140821
                Affiliations
                [1 ]Laboratory of Molecular Neuroscience, Department of Biological Sciences, Graduate School of Science, Tokyo Metropolitan University, Minami-Osawa, Hachioji, Tokyo, Japan
                [2 ]Centre for Cellular Basis of Behavior, Institute of Psychiatry, King's College London, 125 Coldharbour Lane, London, United Kingdom
                McGill University Department of Neurology and Neurosurgery, CANADA
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: ST SH. Performed the experiments: ST AA TS. Analyzed the data: ST KM KPG SH. Contributed reagents/materials/analysis tools: ST AA TS. Wrote the paper: ST KPG SH.

                Article
                PONE-D-15-28028
                10.1371/journal.pone.0140821
                4607440
                26469698
                d5f249b6-1633-44d7-988e-7521716db57b
                Copyright @ 2015

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

                History
                : 26 June 2015
                : 29 September 2015
                Page count
                Figures: 5, Tables: 0, Pages: 12
                Funding
                This work was supported by Grants-in-Aid for Scientific Research (19057007, 25290024) from MEXT of Japan to SH. The funder had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Custom metadata
                All relevant data are within the paper.

                Uncategorized
                Uncategorized

                Comments

                Comment on this article