37
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Molecular Mechanisms Responsible for Therapeutic Potential of Mesenchymal Stem Cell-Derived Secretome

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Mesenchymal stem cell (MSC)-sourced secretome, defined as the set of MSC-derived bioactive factors (soluble proteins, nucleic acids, lipids and extracellular vesicles), showed therapeutic effects similar to those observed after transplantation of MSCs. MSC-derived secretome may bypass many side effects of MSC-based therapy, including unwanted differentiation of engrafted MSCs. In contrast to MSCs which had to be expanded in culture to reach optimal cell number for transplantation, MSC-sourced secretome is immediately available for treatment of acute conditions, including fulminant hepatitis, cerebral ischemia and myocardial infarction. Additionally, MSC-derived secretome could be massively produced from commercially available cell lines avoiding invasive cell collection procedure. In this review article we emphasized molecular and cellular mechanisms that were responsible for beneficial effects of MSC-derived secretomes in the treatment of degenerative and inflammatory diseases of hepatobiliary, respiratory, musculoskeletal, gastrointestinal, cardiovascular and nervous system. Results obtained in a large number of studies suggested that administration of MSC-derived secretomes represents a new, cell-free therapeutic approach for attenuation of inflammatory and degenerative diseases. Therapeutic effects of MSC-sourced secretomes relied on their capacity to deliver genetic material, growth and immunomodulatory factors to the target cells enabling activation of anti-apoptotic and pro-survival pathways that resulted in tissue repair and regeneration.

          Related collections

          Most cited references112

          • Record: found
          • Abstract: found
          • Article: not found

          Exosome-mediated transfer of miR-133b from multipotent mesenchymal stromal cells to neural cells contributes to neurite outgrowth.

          Multipotent mesenchymal stromal cells (MSCs) have potential therapeutic benefit for the treatment of neurological diseases and injury. MSCs interact with and alter brain parenchymal cells by direct cell-cell communication and/or by indirect secretion of factors and thereby promote functional recovery. In this study, we found that MSC treatment of rats subjected to middle cerebral artery occlusion (MCAo) significantly increased microRNA 133b (miR-133b) level in the ipsilateral hemisphere. In vitro, miR-133b levels in MSCs and in their exosomes increased after MSCs were exposed to ipsilateral ischemic tissue extracts from rats subjected to MCAo. miR-133b levels were also increased in primary cultured neurons and astrocytes treated with the exosome-enriched fractions released from these MSCs. Knockdown of miR-133b in MSCs confirmed that the increased miR-133b level in astrocytes is attributed to their transfer from MSCs. Further verification of this exosome-mediated intercellular communication was performed using a cel-miR-67 luciferase reporter system and an MSC-astrocyte coculture model. Cel-miR-67 in MSCs was transferred to astrocytes via exosomes between 50 and 100 nm in diameter. Our data suggest that the cel-miR-67 released from MSCs was primarily contained in exosomes. A gap junction intercellular communication inhibitor arrested the exosomal microRNA communication by inhibiting exosome release. Cultured neurons treated with exosome-enriched fractions from MSCs exposed to 72 hours post-MCAo brain extracts significantly increased the neurite branch number and total neurite length. This study provides the first demonstration that MSCs communicate with brain parenchymal cells and may regulate neurite outgrowth by transfer of miR-133b to neural cells via exosomes. Copyright © 2012 AlphaMed Press.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Mesenchymal Stromal Cell Secretome: Influencing Therapeutic Potential by Cellular Pre-conditioning

            Mesenchymal stromal cells (MSCs) are self-renewing, culture-expandable adult stem cells that have been isolated from a variety of tissues, and possess multipotent differentiation capacity, immunomodulatory properties, and are relatively non-immunogenic. Due to this unique set of characteristics, these cells have attracted great interest in the field of regenerative medicine and have been shown to possess pronounced therapeutic potential in many different pathologies. MSCs' mode of action involves a strong paracrine component resulting from the high levels of bioactive molecules they secrete in response to the local microenvironment. For this reason, MSCs' secretome is currently being explored in several clinical contexts, either using MSC-conditioned media (CM) or purified MSC-derived extracellular vesicles (EVs) to modulate tissue response to a wide array of injuries. Rather than being a constant mixture of molecular factors, MSCs' secretome is known to be dependent on the diverse stimuli present in the microenvironment that MSCs encounter. As such, the composition of the MSCs' secretome can be modulated by preconditioning the MSCs during in vitro culture. This manuscript reviews the existent literature on how preconditioning of MSCs affects the therapeutic potential of their secretome, focusing on MSCs' immunomodulatory and regenerative features, thereby providing new insights for the therapeutic use of MSCs' secretome.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Etiology, prevalence, and treatment of dry eye disease

              Purpose: This review article examines the prevalence, etiology, and current therapies of dry eye disease, with special focus on postmenopausal women. Method: A systematic literature search utilizing MEDLINE was conducted to identify peer-reviewed articles related to dry eye published prior to September 2008. The terms “dry eye” and “women” were searched in combination with one or more of the following words or phrases: prevalence, postmenopausal, etiology, risk factors, therapy, medications, surgery, tear film, and quality of life. Articles were selected based on their direct applicability to the subject matter. A manual search was also conducted based on citations in the published literature. Results: Epidemiologic studies identified prevalence rates ranging from 7% in the United States to 33% in Taiwan and Japan. Risk factors include advanced age, female sex, smoking, extreme heat or cold weather conditions, low relative humidity, use of video display terminals, refractive surgery, contact lens wear, and certain medications. Conclusion: The last decade has brought about a better understanding of the etiology of dry eye disease. New therapies that can alleviate the signs and symptoms of dry eye disease and, consequently, improve the quality of life of dry eye patients are available in the market.
                Bookmark

                Author and article information

                Journal
                Cells
                Cells
                cells
                Cells
                MDPI
                2073-4409
                16 May 2019
                May 2019
                : 8
                : 5
                : 467
                Affiliations
                [1 ]Regenerative Processing Plant, LLC, Palm Harbor, FL 34176, USA; dr.harrell@ 123456regenerativeplant.org (C.R.H.); crissy@ 123456regenerativeplant.org (C.F.)
                [2 ]Department for Microbiology and Immunology, Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 69 Svetozara Markovica Street, 34000 Kragujevac, Serbia; nemanjajovicic.kg@ 123456gmail.com (N.J.); arne@ 123456medf.kg.ac.rs (N.A.)
                [3 ]Institute of Anatomy, University of Bern, Baltzerstrasse 2, 3012 Bern, Switzerland; valentin.djonov@ 123456ana.unibe.ch
                Author notes
                [* ]Correspondence: drvolarevic@ 123456yahoo.com ; Tel.: +38134306800
                Author information
                https://orcid.org/0000-0001-6652-1042
                https://orcid.org/0000-0003-1697-8380
                Article
                cells-08-00467
                10.3390/cells8050467
                6562906
                31100966
                d602f0e3-86c6-465b-98dd-0b12b53f6134
                © 2019 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 10 April 2019
                : 30 April 2019
                Categories
                Review

                mesenchymal stem cells,secretome,therapy,inflammatory diseases,degenerative diseases

                Comments

                Comment on this article