13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Assessing the Need for Multiplex and Multifunctional Tick-Borne Disease Test in Routine Clinical Laboratory Samples from Lyme Disease and Febrile Patients with a History of a Tick Bite

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Human polymicrobial infections in tick-borne disease (TBD) patients is an emerging public health theme. However, the requirement for holistic TBD tests in routine clinical laboratories is ambiguous. TICKPLEX ® PLUS is a holistic TBD test utilized herein to assess the need for multiplex and multifunctional diagnostic tools in a routine clinical laboratory. The study involved 150 specimens categorized into Lyme disease (LD)-positive ( n = 48), LD-negative ( n = 30), and febrile patients from whom borrelia serology was requested ( n = 72, later “febrile patients”) based on reference test results from United Medix, Finland. Reference tests from DiaSorin, Immunetics, and Mikrogen Diagnostik followed the two-tier LD testing system. A comparison between the reference tests and TICKPLEX ® PLUS produced 86%, 88%, and 87% positive, negative, and overall agreement, respectively. Additionally, up to 15% of LD and 11% of febrile patients responded to TBD related coinfections and opportunistic microbes. The results demonstrated that one (TICKPLEX ® PLUS) test can aid in a LD diagnosis instead of four tests. Moreover, TBD is not limited to just LD, as the specimens produced immune responses to several TBD microbes. Lastly, the study indicated that the screening of febrile patients for TBDs could be a missed opportunity at reducing unreported patient cases.

          Related collections

          Most cited references74

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Interrater reliability: the kappa statistic

          The kappa statistic is frequently used to test interrater reliability. The importance of rater reliability lies in the fact that it represents the extent to which the data collected in the study are correct representations of the variables measured. Measurement of the extent to which data collectors (raters) assign the same score to the same variable is called interrater reliability. While there have been a variety of methods to measure interrater reliability, traditionally it was measured as percent agreement, calculated as the number of agreement scores divided by the total number of scores. In 1960, Jacob Cohen critiqued use of percent agreement due to its inability to account for chance agreement. He introduced the Cohen’s kappa, developed to account for the possibility that raters actually guess on at least some variables due to uncertainty. Like most correlation statistics, the kappa can range from −1 to +1. While the kappa is one of the most commonly used statistics to test interrater reliability, it has limitations. Judgments about what level of kappa should be acceptable for health research are questioned. Cohen’s suggested interpretation may be too lenient for health related studies because it implies that a score as low as 0.41 might be acceptable. Kappa and percent agreement are compared, and levels for both kappa and percent agreement that should be demanded in healthcare studies are suggested.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Statistical notes for clinical researchers: Chi-squared test and Fisher's exact test

            When we try to compare proportions of a categorical outcome according to different independent groups, we can consider several statistical tests such as chi-squared test, Fisher's exact test, or z-test. The chi-squared test and Fisher's exact test can assess for independence between two variables when the comparing groups are independent and not correlated. The chi-squared test applies an approximation assuming the sample is large, while the Fisher's exact test runs an exact procedure especially for small-sized samples. Chi-squared test 1. Independency test The chi-squared test is used to compare the distribution of a categorical variable in a sample or a group with the distribution in another one. If the distribution of the categorical variable is not much different over different groups, we can conclude the distribution of the categorical variable is not related to the variable of groups. Or we can say the categorical variable and groups are independent. For example, if men have a specific condition more than women, there is bigger chance to find a person with the condition among men than among women. We don't think gender is independent from the condition. If there is equal chance of having the condition among men and women, we will find the chance of observing the condition is the same regardless of gender and can conclude their relationship as independent. Examples 1 and 2 in Table 1 show perfect independent relationship between condition (A and B) and gender (male and female), while example 3 represents a strong association between them. In example 3, women had a greater chance to have the condition A (p = 0.7) compared to men (p = 0.3). The chi-squared test performs an independency test under following null and alternative hypotheses, H0 and H1, respectively. H0: Independent (no association) H1: Not independent (association) The test statistic of chi-squared test: χ 2 = ∑ ( 0 - E ) 2 E ~ χ 2 with degrees of freedom (r - 1)(c - 1), Where O and E represent observed and expected frequency, and r and c is the number of rows and columns of the contingency table. The first step of the chi-squared test is calculation of expected frequencies (E). E is calculated under the assumption of independent relation or, in other words, no association. Under independent relationship, the cell frequencies are determined only by marginal proportions, i.e., proportion of A (60/200 = 0.3) and B (1400/200 = 0.7) in example 2. In example 2, the expected frequency of the male and A cell is calculated as 30 that is the proportion of 0.3 (proportion of A) in 100 Males. Similarly, the expected frequency of the male and A cell is 50 that is the proportion of 0.5 (proportion of A = 100/200 = 0.5) in 100 Males in example 3 (Table 1). Expected frequency (E) of Male & A = Number of A * Number of Male Total number = p A * p male * total number The second step is obtaining (O - E)2/E for each cell and summing up the values over each cell. The final summed value follows chi-squared distribution. For the ‘male and A’ cell in example 3, (O - E)2/E = (30 - 50)2/50 = 8. Chi-squared statistic calculated = ∑ ( 0 - E ) 2 E = 8 + 8 + 8 + 8 = 32 in example 3. For examples 1 and 2, the chi-squared statistics equal zero. A big difference between observed value and expected value or a large chi-squared statistic implies that the assumption of independency applied in calculation of expected value is irrelevant to the observed data that is being tested. The degrees of freedom is one as the data has two rows and two columns: (r - 1) * (c - 1) = (2 - 1) * (2 - 1) = 1. The final step is making conclusion referring to the chi-squared distribution. We reject the null hypothesis of independence if the calculated chi-squared statistic is larger than the critical value from the chi-squared distribution. In the chi-squared distribution, the critical values are 3.84, 5.99, 7.82, and 9.49, with corresponding degrees of freedom of 1, 2, 3, and 4, respectively, at an alpha level of 0.5. Larger chi-square statistics than these critical values of specific corresponding degrees of freedom lead to the rejection of null hypothesis of independence. In examples 1 and 2, the chi-squared statistic is zero which is smaller than the critical value of 3.84, concluding independent relationship between gender and condition. However, data in example 3 have a large chi-squared statistic of 32 which is larger than 3.84; it is large enough to reject the null hypothesis of independence, concluding a significant association between two variables. The chi-squared test needs an adequate large sample size because it is based on an approximation approach. The result is relevant only when no more than 20% of cells with expected frequencies < 5 and no cell have expected frequency < 1.1 2. Effect size As the significant test does not tell us the degree of effect, displaying effect size is helpful to show the magnitude of effect. There are three different measures of effect size for chi-squared test, Phi (φ), Cramer's V (V), and odds ratio (OR). Among them φ and OR can be used as the effect size only in 2 × 2 contingency tables, but not for bigger tables. φ = χ 2 n V = χ 2 n · d f , where n is total number of observation, and df is degrees of freedom calculated by (r - 1) * (c - 1). Here, r and c are the numbers of rows and columns of the contingency table. In example 3, we can calculate them as φ = χ 2 n = 32 200 = 0.4 , V = χ 2 n · d f = 32 200 · 1 = 0.4 , and O R = 70 · 70 30 · 30 = 5.44 . Referring to Table 2, the effect size V = 0.4 is interpreted medium to large. If number of rows and/or columns are larger than 2, only Cramer's V is available. 3. Post-hoc pairwise comparison of chi-squared test The chi-squared test assesses a global question whether relation between two variables is independent or associated. If there are three or more levels in either variable, a post-hoc pairwise comparison is required to compare the levels of each other. Let's say that there are three comparative groups like control, experiment 1, and experiment 2 and we try to compare the prevalence of a certain disease. If the chi-squared test concludes that there is significant association, we may want to know if there is any significant difference in three compared pairs, between control and experiment 1, between control and experiment 2, and between experiment 1 and experiment 2. We can reduce the table into multiple 2 × 2 contingency tables and perform the chi-squared test with applying the Bonferroni corrected alpha level (corrected α = 0.05/3 compared pairs = 0.017). Fisher's exact test Fisher's exact test is practically applied only in analysis of small samples but actually it is valid for all sample sizes. While the chi-squared test relies on an approximation, Fisher's exact test is one of exact tests. Especially when more than 20% of cells have expected frequencies < 5, we need to use Fisher's exact test because applying approximation method is inadequate. Fisher's exact test assesses the null hypothesis of independence applying hypergeometric distribution of the numbers in the cells of the table. Many packages provide the results of Fisher's exact test for 2 × 2 contingency tables but not for bigger contingency tables with more rows or columns. For example, the SPSS statistical package automatically provides an analytical result of Fisher's exact test as well as chi-squared test only for 2 × 2 contingency tables. For Fisher's exact test of bigger contingency tables, we can use web pages providing such analyses. For example, the web page ‘Social Science Statistics’ (http://www.socscistatistics.com/tests/chisquare2/Default2.aspx) permits performance of Fisher exact test for up to 5 × 5 contingency tables. The procedure of chi-squared test and Fisher's exact test using IBM SPSS Statistics for Windows Version 23.0 (IBM Corp., Armonk, NY, USA) is as follows:
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found
              Is Open Access

              Method agreement analysis: a review of correct methodology.

              The correct approach to analyzing method agreement is discussed. Whether we are considering agreement between two measurements on the same samples (repeatability) or two individuals using identical methodology on identical samples (reproducibility) or comparing two methods, appropriate procedures are described, and worked examples are shown. The correct approaches for both categorical and numerical variables are explained. More complex analyses involving a comparison of more than two pairs of data are mentioned and guidance for these analyses given. Simple formulae for calculating the approximate sample size needed for agreement analysis are also given. Examples of good practice from the reproduction literature are cited, and common errors of methodology are indicated. 2010 Elsevier Inc. All rights reserved.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                Trop Med Infect Dis
                Trop Med Infect Dis
                tropicalmed
                Tropical Medicine and Infectious Disease
                MDPI
                2414-6366
                17 March 2021
                March 2021
                : 6
                : 1
                : 38
                Affiliations
                [1 ]Tezted Ltd., Mattilaniemi 6-8, 40100 Jyväskylä, Finland
                [2 ]United Medix Laboratories, Kivihaantie 7, 00310 Helsinki, Finland; sakari.jokiranta@ 123456tammerbiolab.fi (T.S.J.); sanna.filen@ 123456gmail.com (S.F.)
                Author notes
                Author information
                https://orcid.org/0000-0003-4346-027X
                https://orcid.org/0000-0002-7470-5770
                Article
                tropicalmed-06-00038
                10.3390/tropicalmed6010038
                8005980
                d6125174-cbcd-41fe-90cc-c75592630609
                © 2021 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 23 February 2021
                : 12 March 2021
                Categories
                Article

                lyme disease,tick-borne disease,zoonoses,spirochetes,polymicrobial,summer flu,misdiagnosis,persister,borrelia,lyme diagnostic

                Comments

                Comment on this article