43
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      First identification of kdr allele F1534S in VGSC gene and its association with resistance to pyrethroid insecticides in Aedes albopictus populations from Haikou City, Hainan Island, China

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Aedes albopictus is distributed widely in China, as a primary vector of Dengue fever and Chikungunya fever in south of China. Chemical insecticide control is one of the integrated programmes to prevent mosquito-borne diseases. Long-term applications of pyrethroids have resulted in the development of resistance in Ae. albopictus populations in China. However, the susceptibility of Ae. albopictus to pyrethroids in Hainan Island was unclear. Knockdown resistance (kdr), caused by point mutations in the VGSC gene, is one of the mechanisms that confer resistance to DDT and pyrethroids. This study was to investigate the resistance level of Ae. albopictus populations in Haikou City to three pyrethroid insecticides, and elucidate the relationship between the resistant phenotype and kdr mutations.

          Methods

          The Aedes albopictus samples were collected in Xinbu Island (XI), Longtang Town (LT), Shishan Town (ST), Baishamen Park (BP), and Flower Market (FM) from Haikou City, Hainan Island, China. The larval susceptibility to deltamethrin, permethrin and beta-cypermethrin was tested by larval bioassays, and adult susceptibility to deltamethrin and DDT was determined by adult bioassays. The degree of resistance was determined by resistance ratio value (RR 50 > 3) for larvae and by mortality for adult. The kdr alleles at codon 1534 of the VGSC gene were genotyped. The relationship between kdr genotypes and resistant phenotypes was analyzed by Chi-square test.

          Results

          Out of five populations, assessed by larval bioassays, XI was susceptible to deltamethrin and permethrin; LT was susceptible to permethrin and beta-cypermethrin; and ST was susceptible to permithrin. FM and BP both were resistant to all of the three pyrethroids, and FM showed the highest degree of resistance, with RR 50 values from 65.17 to 436.36. A total of 493 individuals from the larval bioassays were genotyped for kdr alleles. Five alleles were detected, including two wildtype alleles, TTC(F) (67.04 %) and TTT(F) (0.41 %), and three mutant alleles, TGC(C) (0.30 %), TCC(S) (31.54 %) and TTG(L) (0.71 %). There was a clear correlation between mutant alleles (or F1534S) and resistant phenotypes ( P < 0.01).

          Conclusion

          Two novel kdr mutant alleles F1534S and F1534L were detected in the pyrethroid resistant populations of Ae. albopictus in Haikou Hainan, China. For the first time, the mutant F1534S was associated with pyrethroid resistance in Ae. albopictus.

          Electronic supplementary material

          The online version of this article (doi:10.1186/s40249-016-0125-x) contains supplementary material, which is available to authorized users.

          Related collections

          Most cited references49

          • Record: found
          • Abstract: found
          • Article: not found

          Pyrethroid and DDT cross-resistance in Aedes aegypti is correlated with novel mutations in the voltage-gated sodium channel gene.

          Samples of the dengue vector mosquito Aedes aegypti (L.) (Diptera: Culicidae) were collected from 13 localities between 1995 and 1998. Two laboratory strains, Bora (French Polynesia) and AEAE, were both susceptible to DDT and permethrin; all other strains, except Larentuka (Indonesia) and Bouaké (Ivory Coast), contained individual fourth-instar larvae resistant to permethrin. Ten strains were subjected to a range of biochemical assays. Many strains had elevated carboxylesterase activity compared to the Bora strain; this was particularly high in the Indonesian strains Salatiga and Semarang, and in the Guyane strain (Cayenne). Monooxygenase levels were increased in the Salatiga and Paea (Polynesia) strains, and reduced in the two Thai strains (Mae Kaza, Mae Kud) and the Larentuka strain. Glutathione S-transferase activity was elevated in the Guyane strain. All other enzyme profiles were similar to the susceptible strain. The presence of both DDT and pyrethroid resistance in the Semarang, Belem (Brazil) and Long Hoa (Vietnam) strains suggested the presence of a knock-down resistant (kdr)-type resistance mechanism. Part of the S6 hydrophobic segment of domain II of the voltage-gated sodium channel gene was obtained by RT-PCR and sequenced from several insects from all 13 field strains. Four novel mutations were identified. Three strains contained identical amino acid substitutions at two positions, two strains shared a different substitution, and one strain was homozygous for a fourth alteration. The leucine to phenylalanine substitution that confers nerve insensitivity to pyrethroids in a range of other resistant insects was absent. Direct neurophysiological assays on individual larvae from three strains with these mutations demonstrated reduced nerve sensitivity to permethrin or lambda cyhalothrin inhibition compared to the susceptible strains.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Insecticide resistance in the major dengue vectors Aedes albopictus and Aedes aegypti

              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              The changing epidemiology of dengue in China, 1990-2014: a descriptive analysis of 25 years of nationwide surveillance data

              Background Dengue has been a notifiable disease in China since 1 September 1989. Cases have been reported each year during the past 25 years of dramatic socio-economic changes in China, and reached a historical high in 2014. This study describes the changing epidemiology of dengue in China during this period, to identify high-risk areas and seasons and to inform dengue prevention and control activities. Methods We describe the incidence and distribution of dengue in mainland China using notifiable surveillance data from 1990-2014, which includes classification of imported and indigenous cases from 2005-2014. Results From 1990-2014, 69,321 cases of dengue including 11 deaths were reported in mainland China, equating to 2.2 cases per one million residents. The highest number was recorded in 2014 (47,056 cases). The number of provinces affected has increased, from a median of three provinces per year (range: 1 to 5 provinces) during 1990-2000 to a median of 14.5 provinces per year (range: 5 to 26 provinces) during 2001-2014. During 2005-2014, imported cases were reported almost every month and 28 provinces (90.3%) were affected. However, 99.8% of indigenous cases occurred between July and November. The regions reporting indigenous cases have expanded from the coastal provinces of southern China and provinces adjacent to Southeast Asia to the central part of China. Dengue virus serotypes 1, 2, 3, and 4 were all detected from 2009-2014. Conclusions In China, the area affected by dengue has expanded since 2000 and the incidence has increased steadily since 2012, for both imported and indigenous dengue. Surveillance and control strategies should be adjusted to account for these changes, and further research should explore the drivers of these trends. Please see related article: http://dx.doi.org/10.1186/s12916-015-0345-0 Electronic supplementary material The online version of this article (doi:10.1186/s12916-015-0336-1) contains supplementary material, which is available to authorized users.
                Bookmark

                Author and article information

                Contributors
                yajun_ma@163.com
                Journal
                Infect Dis Poverty
                Infect Dis Poverty
                Infectious Diseases of Poverty
                BioMed Central (London )
                2049-9957
                2 May 2016
                2 May 2016
                2016
                : 5
                : 31
                Affiliations
                [ ]Department of Tropical Infectious Diseases, Faculty of Tropical Medicine and Public Health, Second Military Medical University, Shanghai, 200433 China
                [ ]Haikou Center for Disease Control and Prevention, Haikou, 571100 China
                [ ]CDC Key Laboratory of Surveillance and Early-Warning on Infectious Disease, Haikou, 571100 China
                Article
                125
                10.1186/s40249-016-0125-x
                4852438
                27133234
                d616676c-c4ed-4c7d-a9f6-4a2e044ab4fb
                © Chen et al. 2016

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 30 December 2015
                : 30 March 2016
                Funding
                Funded by: National Natural Sciences Foundation of China
                Award ID: 81371848
                Award Recipient :
                Categories
                Research Article
                Custom metadata
                © The Author(s) 2016

                aedes albopictus,pyrethroids,resistance,kdr mutation,china
                aedes albopictus, pyrethroids, resistance, kdr mutation, china

                Comments

                Comment on this article