2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Novel mutations in the ABCD1 gene caused adrenomyeloneuropathy in the Chinese population

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          As a rare genetic disease, adrenomyeloneuropathy (AMN) is the most common adult phenotype of X-linked adrenoleukodystrophy (X-ALD). Mutations in the ABCD1 gene have been identified to cause AMN.

          Methods

          We applied clinical evaluation, laboratory tests, and neuroimaging on three patients with progressive spastic paraparesis. In genetic analysis, we investigated ABCD1 gene mutations by whole-exome sequencing and Sanger sequencing. Bioinformatics tools were used to predict the effects of identified ABCD1 mutations on the protein.

          Results

          All three patients were men with adult-onset disease, mainly characterized by progressive spastic paraparesis. Among them, two patients had peripheral neuropathy and one patient had signs of adrenal insufficiency. All three patients showed cerebral involvement on brain MRI, while two patients were found with diffuse cord atrophy on spinal MRI. High-VLCFA levels in plasma, as well as C24:0/C22:0 and C26:0/C22:0 ratios, were found in all three patients. In addition, three different ABCD1 mutations were identified in three unrelated Chinese families, including one known mutation (c.1415_1416delAG) and two novel mutations (c.217C>T and c.160_170delACGCAGGAGGC). Based on the clinical assessment, radiographic, biochemical, and genetic testing, the final diagnosis was AMN in these patients with spastic paraparesis.

          Conclusion

          This study reported three patients with AMN and identified two novel mutations in the ABCD1 in the Chinese population. Our finding emphasized that X-ALD is an important cause of adult-onset spastic paraplegia. Thus, neuroimaging, VLCFA testing, and especially the detection of the ABCD1 gene have important implications for the etiological diagnosis of adult patients with spastic paraplegia.

          Related collections

          Most cited references28

          • Record: found
          • Abstract: found
          • Article: not found

          A method and server for predicting damaging missense mutations

          To the Editor: Applications of rapidly advancing sequencing technologies exacerbate the need to interpret individual sequence variants. Sequencing of phenotyped clinical subjects will soon become a method of choice in studies of the genetic causes of Mendelian and complex diseases. New exon capture techniques will direct sequencing efforts towards the most informative and easily interpretable protein-coding fraction of the genome. Thus, the demand for computational predictions of the impact of protein sequence variants will continue to grow. Here we present a new method and the corresponding software tool, PolyPhen-2 (http://genetics.bwh.harvard.edu/pph2/), which is different from the early tool PolyPhen1 in the set of predictive features, alignment pipeline, and the method of classification (Fig. 1a). PolyPhen-2 uses eight sequence-based and three structure-based predictive features (Supplementary Table 1) which were selected automatically by an iterative greedy algorithm (Supplementary Methods). Majority of these features involve comparison of a property of the wild-type (ancestral, normal) allele and the corresponding property of the mutant (derived, disease-causing) allele, which together define an amino acid replacement. Most informative features characterize how well the two human alleles fit into the pattern of amino acid replacements within the multiple sequence alignment of homologous proteins, how distant the protein harboring the first deviation from the human wild-type allele is from the human protein, and whether the mutant allele originated at a hypermutable site2. The alignment pipeline selects the set of homologous sequences for the analysis using a clustering algorithm and then constructs and refines their multiple alignment (Supplementary Fig. 1). The functional significance of an allele replacement is predicted from its individual features (Supplementary Figs. 2–4) by Naïve Bayes classifier (Supplementary Methods). We used two pairs of datasets to train and test PolyPhen-2. We compiled the first pair, HumDiv, from all 3,155 damaging alleles with known effects on the molecular function causing human Mendelian diseases, present in the UniProt database, together with 6,321 differences between human proteins and their closely related mammalian homologs, assumed to be non-damaging (Supplementary Methods). The second pair, HumVar3, consists of all the 13,032 human disease-causing mutations from UniProt, together with 8,946 human nsSNPs without annotated involvement in disease, which were treated as non-damaging. We found that PolyPhen-2 performance, as presented by its receiver operating characteristic curves, was consistently superior compared to PolyPhen (Fig. 1b) and it also compared favorably with the three other popular prediction tools4–6 (Fig. 1c). For a false positive rate of 20%, PolyPhen-2 achieves the rate of true positive predictions of 92% and 73% on HumDiv and HumVar, respectively (Supplementary Table 2). One reason for a lower accuracy of predictions on HumVar is that nsSNPs assumed to be non-damaging in HumVar contain a sizable fraction of mildly deleterious alleles. In contrast, most of amino acid replacements assumed non-damaging in HumDiv must be close to selective neutrality. Because alleles that are even mildly but unconditionally deleterious cannot be fixed in the evolving lineage, no method based on comparative sequence analysis is ideal for discriminating between drastically and mildly deleterious mutations, which are assigned to the opposite categories in HumVar. Another reason is that HumDiv uses an extra criterion to avoid possible erroneous annotations of damaging mutations. For a mutation, PolyPhen-2 calculates Naïve Bayes posterior probability that this mutation is damaging and reports estimates of false positive (the chance that the mutation is classified as damaging when it is in fact non-damaging) and true positive (the chance that the mutation is classified as damaging when it is indeed damaging) rates. A mutation is also appraised qualitatively, as benign, possibly damaging, or probably damaging (Supplementary Methods). The user can choose between HumDiv- and HumVar-trained PolyPhen-2. Diagnostics of Mendelian diseases requires distinguishing mutations with drastic effects from all the remaining human variation, including abundant mildly deleterious alleles. Thus, HumVar-trained PolyPhen-2 should be used for this task. In contrast, HumDiv-trained PolyPhen-2 should be used for evaluating rare alleles at loci potentially involved in complex phenotypes, dense mapping of regions identified by genome-wide association studies, and analysis of natural selection from sequence data, where even mildly deleterious alleles must be treated as damaging. Supplementary Material 1
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm.

            The effect of genetic mutation on phenotype is of significant interest in genetics. The type of genetic mutation that causes a single amino acid substitution (AAS) in a protein sequence is called a non-synonymous single nucleotide polymorphism (nsSNP). An nsSNP could potentially affect the function of the protein, subsequently altering the carrier's phenotype. This protocol describes the use of the 'Sorting Tolerant From Intolerant' (SIFT) algorithm in predicting whether an AAS affects protein function. To assess the effect of a substitution, SIFT assumes that important positions in a protein sequence have been conserved throughout evolution and therefore substitutions at these positions may affect protein function. Thus, by using sequence homology, SIFT predicts the effects of all possible substitutions at each position in the protein sequence. The protocol typically takes 5-20 min, depending on the input. SIFT is available as an online tool (http://sift.jcvi.org).
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              MutationTaster evaluates disease-causing potential of sequence alterations.

                Bookmark

                Author and article information

                Contributors
                Journal
                Front Neurol
                Front Neurol
                Front. Neurol.
                Frontiers in Neurology
                Frontiers Media S.A.
                1664-2295
                28 February 2023
                2023
                : 14
                : 1126729
                Affiliations
                [1] 1Department of Neurology, Fujian Medical University Union Hospital , Fuzhou, Fujian, China
                [2] 2Institute of Clinical Neurology, Fujian Medical University , Fuzhou, Fujian, China
                [3] 3Fujian Key Laboratory of Molecular Neurology and Institute of Neuroscience, Fujian Medical University , Fuzhou, Fujian, China
                Author notes

                Edited by: Huifang Shang, Sichuan University, China

                Reviewed by: Yuka Shibata, Hokkaido University, Japan; Matteo Foschi, University of Bologna, Italy; F. Sirri Çam, Celal Bayar University, Türkiye

                *Correspondence: Qinyong Ye unionqyye@ 123456fjmu.edu.cn

                This article was submitted to Neurogenetics, a section of the journal Frontiers in Neurology

                †These authors have contributed equally to this work and share first authorship

                Article
                10.3389/fneur.2023.1126729
                10011709
                36925939
                d61a35e9-a2a2-4371-9618-af49eafdc789
                Copyright © 2023 He, Zhang, Huang, Cai, Zou and Ye.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 18 December 2022
                : 01 February 2023
                Page count
                Figures: 4, Tables: 2, Equations: 0, References: 28, Pages: 9, Words: 4861
                Funding
                Funded by: National Natural Science Foundation of China, doi 10.13039/501100001809;
                Funded by: Natural Science Foundation of Fujian Province, doi 10.13039/501100003392;
                This study was supported by grants from the National Natural Science Foundation of China (81870995), the Fujian Natural Science Foundation (2022J01727), the Fujian Province Science and Technology Innovation Joint project (2020Y9062), the Youth Project of Scientific Research Talents Project of Health and Family Planning Commission in Fujian Province (2018-1-41), and National Key Clinical Specialty Discipline Construction Programs of Geriatric (2013544).
                Categories
                Neurology
                Original Research

                Neurology
                adrenomyeloneuropathy,x-linked adrenoleukodystrophy,spastic paraparesis,abcd1,mutation
                Neurology
                adrenomyeloneuropathy, x-linked adrenoleukodystrophy, spastic paraparesis, abcd1, mutation

                Comments

                Comment on this article