46
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      MicroRNA-34c Enhances Murine Male Germ Cell Apoptosis through Targeting ATF1

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          MicroRNAs (miRNAs) play vital regulatory roles in many cellular processes. The expression of miRNA (miR)-34c is highly enriched in adult mouse testis, but its roles and underlying mechanisms of action are not well understood.

          Methodology/Principal Findings

          In the present study, we show that miR-34c is detected in mouse pachytene spermatocytes and continues to be highly expressed in spermatids. To explore the specific functions of miR-34c, we have established an in vivo model by transfecting miR-34c inhibitors into primary spermatocytes to study the loss-of-function of miR-34c. The results show that silencing of miR-34c significantly increases the Bcl-2/Bax ratio and prevents germ cell from apoptosis induced by deprivation of testosterone. Moreover, ectopic expression of the miR-34c in GC-2 cell trigger the cell apoptosis with a decreased Bcl-2/Bax ratio and miR-34c inhibition lead to a low spontaneous apoptotic ratio and an increased Bcl-2/Bax ratio. Furthermore, ectopic expression of miR-34c reduces ATF1 protein expression without affecting ATF1 mRNA level via directly binding to ATF1's 3′UTR, indicating that ATF1 is one of miR-34c's target genes. Meanwhile, the knockdown of ATF1 significantly decreases the Bcl-2/Bax ratio and triggers GC-2 cell apoptosis. Inhibition of miR-34c does not decrease the GC-2 cell apoptosis ratio in ATF1 knockdown cells.

          Conclusions/Significance

          Our study shows for the first time that miR-34c functions, at least partially, by targeting the ATF1 gene in germ cell apoptosis, providing a novel mechanism with involvement of miRNA in the regulation of germ cell apoptosis.

          Related collections

          Most cited references51

          • Record: found
          • Abstract: found
          • Article: not found

          Origins and Mechanisms of miRNAs and siRNAs.

          Over the last decade, approximately 20-30 nucleotide RNA molecules have emerged as critical regulators in the expression and function of eukaryotic genomes. Two primary categories of these small RNAs--short interfering RNAs (siRNAs) and microRNAs (miRNAs)--act in both somatic and germline lineages in a broad range of eukaryotic species to regulate endogenous genes and to defend the genome from invasive nucleic acids. Recent advances have revealed unexpected diversity in their biogenesis pathways and the regulatory mechanisms that they access. Our understanding of siRNA- and miRNA-based regulation has direct implications for fundamental biology as well as disease etiology and treatment.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A microRNA DNA methylation signature for human cancer metastasis.

            MicroRNAs (miRNAs) are small, noncoding RNAs that can contribute to cancer development and progression by acting as oncogenes or tumor suppressor genes. Recent studies have also linked different sets of miRNAs to metastasis through either the promotion or suppression of this malignant process. Interestingly, epigenetic silencing of miRNAs with tumor suppressor features by CpG island hypermethylation is also emerging as a common hallmark of human tumors. Thus, we wondered whether there was a miRNA hypermethylation profile characteristic of human metastasis. We used a pharmacological and genomic approach to reveal this aberrant epigenetic silencing program by treating lymph node metastatic cancer cells with a DNA demethylating agent followed by hybridization to an expression microarray. Among the miRNAs that were reactivated upon drug treatment, miR-148a, miR-34b/c, and miR-9 were found to undergo specific hypermethylation-associated silencing in cancer cells compared with normal tissues. The reintroduction of miR-148a and miR-34b/c in cancer cells with epigenetic inactivation inhibited their motility, reduced tumor growth, and inhibited metastasis formation in xenograft models, with an associated down-regulation of the miRNA oncogenic target genes, such as C-MYC, E2F3, CDK6, and TGIF2. Most important, the involvement of miR-148a, miR-34b/c, and miR-9 hypermethylation in metastasis formation was also suggested in human primary malignancies (n = 207) because it was significantly associated with the appearance of lymph node metastasis. Our findings indicate that DNA methylation-associated silencing of tumor suppressor miRNAs contributes to the development of human cancer metastasis.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              MicroRNA-34b and MicroRNA-34c are targets of p53 and cooperate in control of cell proliferation and adhesion-independent growth.

              MicroRNAs (miRNA) are a recently discovered class of noncoding RNAs that negatively regulate gene expression. Recent evidence indicates that miRNAs may play an important role in cancer. However, the mechanism of their deregulation in neoplastic transformation has only begun to be understood. To elucidate the role of tumor suppressor p53 in regulation of miRNAs, we have analyzed changes in miRNA microarray expression profile immediately after conditional inactivation of p53 in primary mouse ovarian surface epithelium cells. Among the most significantly affected miRNAs were miR-34b and miR-34c, which were down-regulated 12-fold according to quantitative reverse transcription-PCR analysis. Computational promoter analysis of the mir-34b/mir-34c locus identified the presence of evolutionarily conserved p53 binding sites approximately 3 kb upstream of the miRNA coding sequence. Consistent with evolutionary conservation, mir-34b/mir-34c were also down-regulated in p53-null human ovarian carcinoma cells. Furthermore, as expected from p53 binding to the mir-34b/c promoter, doxorubicin treatment of wild-type, but not p53-deficient, cells resulted in an increase of mir-34b/mir-34c expression. Importantly, miR-34b and miR-34c cooperate in suppressing proliferation and soft-agar colony formation of neoplastic epithelial ovarian cells, in agreement with the partially overlapping spectrum of their predicted targets. Taken together, these results show the existence of a novel mechanism by which p53 suppresses such critical components of neoplastic growth as cell proliferation and adhesion-independent colony formation.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2012
                30 March 2012
                : 7
                : 3
                : e33861
                Affiliations
                [1]State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, People's Republic of China
                Ospedale Pediatrico Bambino Gesu', Italy
                Author notes

                Conceived and designed the experiments: SC HL XL. Performed the experiments: XL DZ CW. Analyzed the data: XL DZ. Contributed reagents/materials/analysis tools: SC HL JL RF. Wrote the paper: SC XL.

                Article
                PONE-D-11-24300
                10.1371/journal.pone.0033861
                3316505
                22479460
                d61e956f-0de3-415b-bc89-28838cf2bb43
                Liang et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 1 December 2011
                : 18 February 2012
                Page count
                Pages: 11
                Categories
                Research Article
                Biology
                Anatomy and Physiology
                Endocrine System
                Endocrine Physiology
                Reproductive System
                Biotechnology
                Developmental Biology
                Molecular Cell Biology
                Cellular Types
                Nucleic Acids
                Signal Transduction
                Signaling in Cellular Processes
                Zoology
                Medicine
                Anatomy and Physiology
                Endocrine System
                Endocrine Physiology
                Reproductive System
                Endocrinology
                Endocrine Physiology

                Uncategorized
                Uncategorized

                Comments

                Comment on this article