5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found
      Is Open Access

      Ultraviolet radiation oxidative stress affects eye health

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references 64

          • Record: found
          • Abstract: found
          • Article: not found

          Hydrogen peroxide signalling.

           S. Neill (2002)
          Recent biochemical and genetic studies confirm that hydrogen peroxide is a signalling molecule in plants that mediates responses to abiotic and biotic stresses. Signalling roles for hydrogen peroxide during abscisic-acid-mediated stomatal closure, auxin-regulated root gravitropism and tolerance of oxygen deprivation are now evident. The synthesis and action of hydrogen peroxide appear to be linked to those of nitric oxide. Downstream signalling events that are modulated by hydrogen peroxide include calcium mobilisation, protein phosphorylation and gene expression. Calcium and Rop signalling contribute to the maintenance of hydrogen peroxide homeostasis.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            High sensitivity of the human circadian melatonin rhythm to resetting by short wavelength light.

            The endogenous circadian oscillator in mammals, situated in the suprachiasmatic nuclei, receives environmental photic input from specialized subsets of photoreceptive retinal ganglion cells. The human circadian pacemaker is exquisitely sensitive to ocular light exposure, even in some people who are otherwise totally blind. The magnitude of the resetting response to white light depends on the timing, intensity, duration, number and pattern of exposures. We report here that the circadian resetting response in humans, as measured by the pineal melatonin rhythm, is also wavelength dependent. Exposure to 6.5 h of monochromatic light at 460 nm induces a two-fold greater circadian phase delay than 6.5 h of 555 nm monochromatic light of equal photon density. Similarly, 460 nm monochromatic light causes twice the amount of melatonin suppression compared to 555 nm monochromatic light, and is dependent on the duration of exposure in addition to wavelength. These studies demonstrate that the peak of sensitivity of the human circadian pacemaker to light is blue-shifted relative to the three-cone visual photopic system, the sensitivity of which peaks at approximately 555 nm. Thus photopic lux, the standard unit of illuminance, is inappropriate when quantifying the photic drive required to reset the human circadian pacemaker.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Light as a modulator of cognitive brain function.

              Humans are a diurnal species usually exposed to light while engaged in cognitive tasks. Light not only guides performance on these tasks through vision but also exerts non-visual effects that are mediated in part by recently discovered retinal ganglion cells maximally sensitive to blue light. We review recent neuroimaging studies which demonstrate that the wavelength, duration and intensity of light exposure modulate brain responses to (non-visual) cognitive tasks. These responses to light are initially observed in alertness-related subcortical structures (hypothalamus, brainstem, thalamus) and limbic areas (amygdala and hippocampus), followed by modulations of activity in cortical areas, which can ultimately affect behaviour. Light emerges as an important modulator of brain function and cognition.
                Bookmark

                Author and article information

                Journal
                Journal of Biophotonics
                J. Biophotonics
                Wiley
                1864063X
                July 2018
                July 2018
                April 24 2018
                : 11
                : 7
                : e201700377
                Affiliations
                [1 ]Institute for Ophthalmic Research; University of Tuebingen; Tuebingen Germany
                [2 ]Carl Zeiss Vision International GmbH; Aalen Germany
                Article
                10.1002/jbio.201700377
                © 2018

                Comments

                Comment on this article