22
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Fine-Grained Semantic Categorization across the Abstract and Concrete Domains

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A consolidated approach to the study of the mental representation of word meanings has consisted in contrasting different domains of knowledge, broadly reflecting the abstract-concrete dichotomy. More fine-grained semantic distinctions have emerged in neuropsychological and cognitive neuroscience work, reflecting semantic category specificity, but almost exclusively within the concrete domain. Theoretical advances, particularly within the area of embodied cognition, have more recently put forward the idea that distributed neural representations tied to the kinds of experience maintained with the concepts' referents might distinguish conceptual meanings with a high degree of specificity, including those within the abstract domain. Here we report the results of two psycholinguistic rating studies incorporating such theoretical advances with two main objectives: first, to provide empirical evidence of fine-grained distinctions within both the abstract and the concrete semantic domains with respect to relevant psycholinguistic dimensions; second, to develop a carefully controlled linguistic stimulus set that may be used for auditory as well as visual neuroimaging studies focusing on the parametrization of the semantic space beyond the abstract-concrete dichotomy. Ninety-six participants rated a set of 210 sentences across pre-selected concrete (mouth, hand, or leg action-related) and abstract (mental state-, emotion-, mathematics-related) categories, with respect either to different semantic domain-related scales (rating study 1), or to concreteness, familiarity, and context availability (rating study 2). Inferential statistics and correspondence analyses highlighted distinguishing semantic and psycholinguistic traits for each of the pre-selected categories, indicating that a simple abstract-concrete dichotomy is not sufficient to account for the entire semantic variability within either domains.

          Related collections

          Most cited references45

          • Record: found
          • Abstract: found
          • Article: not found

          Grounded cognition.

          Grounded cognition rejects traditional views that cognition is computation on amodal symbols in a modular system, independent of the brain's modal systems for perception, action, and introspection. Instead, grounded cognition proposes that modal simulations, bodily states, and situated action underlie cognition. Accumulating behavioral and neural evidence supporting this view is reviewed from research on perception, memory, knowledge, language, thought, social cognition, and development. Theories of grounded cognition are also reviewed, as are origins of the area and common misperceptions of it. Theoretical, empirical, and methodological issues are raised whose future treatment is likely to affect the growth and impact of grounded cognition.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Sources of mathematical thinking: behavioral and brain-imaging evidence.

            Does the human capacity for mathematical intuition depend on linguistic competence or on visuo-spatial representations? A series of behavioral and brain-imaging experiments provides evidence for both sources. Exact arithmetic is acquired in a language-specific format, transfers poorly to a different language or to novel facts, and recruits networks involved in word-association processes. In contrast, approximate arithmetic shows language independence, relies on a sense of numerical magnitudes, and recruits bilateral areas of the parietal lobes involved in visuo-spatial processing. Mathematical intuition may emerge from the interplay of these brain systems.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Listening to action-related sentences activates fronto-parietal motor circuits.

              Observing actions made by others activates the cortical circuits responsible for the planning and execution of those same actions. This observation-execution matching system (mirror-neuron system) is thought to play an important role in the understanding of actions made by others. In an fMRI experiment, we tested whether this system also becomes active during the processing of action-related sentences. Participants listened to sentences describing actions performed with the mouth, the hand, or the leg. Abstract sentences of comparable syntactic structure were used as control stimuli. The results showed that listening to action-related sentences activates a left fronto-parieto-temporal network that includes the pars opercularis of the inferior frontal gyrus (Broca's area), those sectors of the premotor cortex where the actions described are motorically coded, as well as the inferior parietal lobule, the intraparietal sulcus, and the posterior middle temporal gyrus. These data provide the first direct evidence that listening to sentences that describe actions engages the visuomotor circuits which subserve action execution and observation.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2013
                25 June 2013
                : 8
                : 6
                Affiliations
                [1 ]Laboratorio di linguistica “G. Nencioni”, Scuola Normale Superiore, Pisa, Italy
                [2 ]Faculty of Psychology, Vita-Salute San Raffaele University, Milano, Italy
                [3 ]Department of Nuclear Medicine and Division of Neuroscience, San Raffaele Scientific Institute, Milano, Italy
                University Of Cambridge, United Kingdom
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: MG MMSV MT. Performed the experiments: MG MMSV. Analyzed the data: MG MMSV. Wrote the paper: MG MMSV MT.

                Article
                PONE-D-12-36293
                10.1371/journal.pone.0067090
                3692433
                23825625
                d6237526-ad5b-46d7-834f-beb41bd49685

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                Page count
                Pages: 17
                Funding
                The authors have no support or funding to report.
                Categories
                Research Article
                Biology
                Neuroscience
                Cognitive Neuroscience
                Cognition
                Behavioral Neuroscience
                Neurolinguistics
                Medicine
                Mental Health
                Psychology
                Cognitive Psychology
                Social and Behavioral Sciences
                Communications
                Semantics
                Linguistics
                Neurolinguistics
                Psycholinguistics
                Semantics
                Structural Linguistics

                Uncategorized
                Uncategorized

                Comments

                Comment on this article