3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The mechanism and role of intracellular α-ketoglutarate reduction in hepatic stellate cell activation

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background: The activation of hepatic stellate cells (HSCs) plays a central role in liver fibrosis. α-ketoglutarate is a natural metabolite and previous studies have shown that increase in intracellular α-ketoglutarate can inhibit HSC activation. Aim: The aim of the present study is to determine the changes and role of intracellular α-ketoglutarate in HSC activation and clarify its mechanism of action. Methods: A human HSC cell line (LX-2) and the primary mouse HSC were used in the present study. We detected the changes of intracellular α-ketoglutarate levels and the expression of enzymes involved in the metabolic processes during HSC activation. We used siRNA to determine the role of intracellular α-ketoglutarate in HSC activation and elucidate the mechanism of the metabolic changes. Results: Our results demonstrated that intracellular α-ketoglutarate levels decreased with an HSC cell line and primary mouse HSC activation, as well as the expression of isocitrate dehydrogenase 2 (IDH2), an enzyme that catalyzes the production of α-ketoglutarate. In addition, knockdown of IDH2 efficiently promoted the activation of HSCs, which was able to be reversed by introduction of an α-ketoglutarate analogue. Furthermore, we demonstrated that α-ketoglutarate regulated HSC activation is independent of transforming growth factor-β1 (TGF-β1). Conclusions: Our findings demonstrated that decrease in IDH2 expression limits the production of α-ketoglutarate during HSC activation and in turn promotes the activation of HSCs through a TGF-β1 independent pathway. The present study suggests that IDH2 and α-ketoglutarate may be potential new targets for the prevention and treatment of liver fibrosis.

          Related collections

          Most cited references29

          • Record: found
          • Abstract: found
          • Article: not found

          Pathobiology of liver fibrosis: a translational success story.

          Reversibility of hepatic fibrosis and cirrhosis following antiviral therapy for hepatitis B or C has advanced the prospect of developing antifibrotic therapies for patients with chronic liver diseases, especially non-alcoholic steatohepatitis. Mechanisms of fibrosis have focused on hepatic stellate cells, which become fibrogenic myofibroblasts during injury through 'activation', and are at the nexus of efforts to define novel drug targets. Recent studies have clarified pathways of stellate cell gene regulation and epigenetics, emerging pathways of fibrosis regression through the recruitment and amplification of fibrolytic macrophages, nuanced responses of discrete inflammatory cell subsets and the identification of the 'ductular reaction' as a marker of severe injury and repair. Based on our expanded knowledge of fibrosis pathogenesis, attention is now directed towards strategies for antifibrotic therapies and regulatory challenges for conducting clinical trials with these agents. New therapies are attempting to: 1) Control or cure the primary disease or reduce tissue injury; 2) Target receptor-ligand interactions and intracellular signaling; 3) Inhibit fibrogenesis; and 4) Promote resolution of fibrosis. Progress is urgently needed in validating non-invasive markers of fibrosis progression and regression that can supplant biopsy and shorten the duration of clinical trials. Both scientific and clinical challenges remain, however the past three decades of steady progress in understanding liver fibrosis have contributed to an emerging translational success story, with realistic hopes for antifibrotic therapies to treat patients with chronic liver disease in the near future.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The metabolite α-ketoglutarate extends lifespan by inhibiting ATP synthase and TOR.

            Metabolism and ageing are intimately linked. Compared with ad libitum feeding, dietary restriction consistently extends lifespan and delays age-related diseases in evolutionarily diverse organisms. Similar conditions of nutrient limitation and genetic or pharmacological perturbations of nutrient or energy metabolism also have longevity benefits. Recently, several metabolites have been identified that modulate ageing; however, the molecular mechanisms underlying this are largely undefined. Here we show that α-ketoglutarate (α-KG), a tricarboxylic acid cycle intermediate, extends the lifespan of adult Caenorhabditis elegans. ATP synthase subunit β is identified as a novel binding protein of α-KG using a small-molecule target identification strategy termed drug affinity responsive target stability (DARTS). The ATP synthase, also known as complex V of the mitochondrial electron transport chain, is the main cellular energy-generating machinery and is highly conserved throughout evolution. Although complete loss of mitochondrial function is detrimental, partial suppression of the electron transport chain has been shown to extend C. elegans lifespan. We show that α-KG inhibits ATP synthase and, similar to ATP synthase knockdown, inhibition by α-KG leads to reduced ATP content, decreased oxygen consumption, and increased autophagy in both C. elegans and mammalian cells. We provide evidence that the lifespan increase by α-KG requires ATP synthase subunit β and is dependent on target of rapamycin (TOR) downstream. Endogenous α-KG levels are increased on starvation and α-KG does not extend the lifespan of dietary-restricted animals, indicating that α-KG is a key metabolite that mediates longevity by dietary restriction. Our analyses uncover new molecular links between a common metabolite, a universal cellular energy generator and dietary restriction in the regulation of organismal lifespan, thus suggesting new strategies for the prevention and treatment of ageing and age-related diseases.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              HIF1α induced switch from bivalent to exclusively glycolytic metabolism during ESC-to-EpiSC/hESC transition.

              The function of metabolic state in stemness is poorly understood. Mouse embryonic stem cells (ESC) and epiblast stem cells (EpiSC) are at distinct pluripotent states representing the inner cell mass (ICM) and epiblast embryos. Human embryonic stem cells (hESC) are similar to EpiSC stage. We now show a dramatic metabolic difference between these two stages. EpiSC/hESC are highly glycolytic, while ESC are bivalent in their energy production, dynamically switching from glycolysis to mitochondrial respiration on demand. Despite having a more developed and expanding mitochondrial content, EpiSC/hESC have low mitochondrial respiratory capacity due to low cytochrome c oxidase (COX) expression. Similarly, in vivo epiblasts suppress COX levels. These data reveal EpiSC/hESC functional similarity to the glycolytic phenotype in cancer (Warburg effect). We further show that hypoxia-inducible factor 1α (HIF1α) is sufficient to drive ESC to a glycolytic Activin/Nodal-dependent EpiSC-like stage. This metabolic switch during early stem-cell development may be deterministic.
                Bookmark

                Author and article information

                Contributors
                Journal
                Biosci Rep
                Biosci. Rep
                bsr
                Bioscience Reports
                Portland Press Ltd.
                0144-8463
                1573-4935
                27 March 2020
                12 March 2020
                : 40
                : 3
                : BSR20193385
                Affiliations
                Department of Gastroenterology, the Affiliated Hospital of Qingdao University, China
                Author notes
                Correspondence: Jianjian Zhao ( jjgg8814@ 123456163.com )
                Author information
                http://orcid.org/0000-0002-6060-9374
                Article
                BSR20193385
                10.1042/BSR20193385
                7069903
                32124915
                d628ea60-24f7-4e64-91cd-b452da74c778
                © 2020 The Author(s).

                This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution License 4.0 (CC BY).

                History
                : 28 September 2019
                : 18 February 2020
                : 26 February 2020
                : 03 March 2020
                Page count
                Pages: 10
                Categories
                Metabolism
                Gastrointestinal, Renal & Hepatic Systems
                Research Articles

                Life sciences
                α-ketoglutarate,hepatic stellate cells,isocitrate dehydrogenase 2,metabolite
                Life sciences
                α-ketoglutarate, hepatic stellate cells, isocitrate dehydrogenase 2, metabolite

                Comments

                Comment on this article