47
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Interpersonal body and neural synchronization as a marker of implicit social interaction

      research-article
      a , 1 , 2 , 3 , 4 , 1 , 2 , 4
      Scientific Reports
      Nature Publishing Group

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          One may have experienced his or her footsteps unconsciously synchronize with the footsteps of a friend while walking together, or heard an audience's clapping hands naturally synchronize into a steady rhythm. However, the mechanisms of body movement synchrony and the role of this phenomenon in implicit interpersonal interactions remain unclear. We aimed to evaluate unconscious body movement synchrony changes as an index of implicit interpersonal interaction between the participants, and also to assess the underlying neural correlates and functional connectivity among and within the brain regions. We found that synchrony of both fingertip movement and neural activity between the two participants increased after cooperative interaction. These results suggest that the increase of interpersonal body movement synchrony via interpersonal interaction can be a measurable basis of implicit social interaction. The paradigm provides a tool for identifying the behavioral and the neural correlates of implicit social interaction.

          Related collections

          Most cited references33

          • Record: found
          • Abstract: found
          • Article: not found

          Measuring phase synchrony in brain signals

          This article presents, for the first time, a practical method for the direct quantification of frequency‐specific synchronization (i.e., transient phase‐locking) between two neuroelectric signals. The motivation for its development is to be able to examine the role of neural synchronies as a putative mechanism for long‐range neural integration during cognitive tasks. The method, called phase‐locking statistics (PLS), measures the significance of the phase covariance between two signals with a reasonable time‐resolution (<100 ms). Unlike the more traditional method of spectral coherence, PLS separates the phase and amplitude components and can be directly interpreted in the framework of neural integration. To validate synchrony values against background fluctuations, PLS uses surrogate data and thus makes no a priori assumptions on the nature of the experimental data. We also apply PLS to investigate intracortical recordings from an epileptic patient performing a visual discrimination task. We find large‐scale synchronies in the gamma band (45 Hz), e.g., between hippocampus and frontal gyrus, and local synchronies, within a limbic region, a few cm apart. We argue that whereas long‐scale effects do reflect cognitive processing, short‐scale synchronies are likely to be due to volume conduction. We discuss ways to separate such conduction effects from true signal synchrony. Hum Brain Mapping 8:194–208, 1999. © 1999 Wiley‐Liss, Inc.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The role of the right temporoparietal junction in social interaction: how low-level computational processes contribute to meta-cognition.

            Accumulating evidence from cognitive neuroscience indicates that the right inferior parietal cortex, at the junction with the posterior temporal cortex, plays a critical role in various aspects of social cognition such as theory of mind and empathy. With a quantitative meta-analysis of 70 functional neuroimaging studies, the authors demonstrate that this area is also engaged in lower-level (bottom-up) computational processes associated with the sense of agency and reorienting attention to salient stimuli. It is argued that this domain-general computational mechanism is crucial for higher level social cognitive processing.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Inter-Brain Synchronization during Social Interaction

              During social interaction, both participants are continuously active, each modifying their own actions in response to the continuously changing actions of the partner. This continuous mutual adaptation results in interactional synchrony to which both members contribute. Freely exchanging the role of imitator and model is a well-framed example of interactional synchrony resulting from a mutual behavioral negotiation. How the participants' brain activity underlies this process is currently a question that hyperscanning recordings allow us to explore. In particular, it remains largely unknown to what extent oscillatory synchronization could emerge between two brains during social interaction. To explore this issue, 18 participants paired as 9 dyads were recorded with dual-video and dual-EEG setups while they were engaged in spontaneous imitation of hand movements. We measured interactional synchrony and the turn-taking between model and imitator. We discovered by the use of nonlinear techniques that states of interactional synchrony correlate with the emergence of an interbrain synchronizing network in the alpha-mu band between the right centroparietal regions. These regions have been suggested to play a pivotal role in social interaction. Here, they acted symmetrically as key functional hubs in the interindividual brainweb. Additionally, neural synchronization became asymmetrical in the higher frequency bands possibly reflecting a top-down modulation of the roles of model and imitator in the ongoing interaction.
                Bookmark

                Author and article information

                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group
                2045-2322
                11 December 2012
                2012
                : 2
                : 959
                Affiliations
                [1 ]Computation and Neural Systems, California Institute of Technology , Pasadena, CA 91125, USA
                [2 ]Division of Biology, California Institute of Technology , Pasadena, CA 91125, USA
                [3 ]Research Center for Advanced Science and Technology, The University of Tokyo , Tokyo, Japan
                [4 ]Japan Science and Technology Agency , CREST, Saitama, Japan
                Author notes
                Article
                srep00959
                10.1038/srep00959
                3518815
                23233878
                d63120b6-9daf-4db8-9558-b79954020259
                Copyright © 2012, Macmillan Publishers Limited. All rights reserved

                This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/

                History
                : 09 May 2012
                : 15 November 2012
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article