81
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Drought sensitivity of Amazonian carbon balance revealed by atmospheric measurements.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Feedbacks between land carbon pools and climate provide one of the largest sources of uncertainty in our predictions of global climate. Estimates of the sensitivity of the terrestrial carbon budget to climate anomalies in the tropics and the identification of the mechanisms responsible for feedback effects remain uncertain. The Amazon basin stores a vast amount of carbon, and has experienced increasingly higher temperatures and more frequent floods and droughts over the past two decades. Here we report seasonal and annual carbon balances across the Amazon basin, based on carbon dioxide and carbon monoxide measurements for the anomalously dry and wet years 2010 and 2011, respectively. We find that the Amazon basin lost 0.48 ± 0.18 petagrams of carbon per year (Pg C yr(-1)) during the dry year but was carbon neutral (0.06 ± 0.1 Pg C yr(-1)) during the wet year. Taking into account carbon losses from fire by using carbon monoxide measurements, we derived the basin net biome exchange (that is, the carbon flux between the non-burned forest and the atmosphere) revealing that during the dry year, vegetation was carbon neutral. During the wet year, vegetation was a net carbon sink of 0.25 ± 0.14 Pg C yr(-1), which is roughly consistent with the mean long-term intact-forest biomass sink of 0.39 ± 0.10 Pg C yr(-1) previously estimated from forest censuses. Observations from Amazonian forest plots suggest the suppression of photosynthesis during drought as the primary cause for the 2010 sink neutralization. Overall, our results suggest that moisture has an important role in determining the Amazonian carbon balance. If the recent trend of increasing precipitation extremes persists, the Amazon may become an increasing carbon source as a result of both emissions from fires and the suppression of net biome exchange by drought.

          Related collections

          Author and article information

          Journal
          Nature
          Nature
          Springer Science and Business Media LLC
          1476-4687
          0028-0836
          Feb 06 2014
          : 506
          : 7486
          Affiliations
          [1 ] 1] Instituto de Pesquisas Energéticas e Nucleares (IPEN)-Comissao Nacional de Energia Nuclear (CNEN)-Atmospheric Chemistry Laboratory, 2242 Avenida Professor Lineu Prestes, Cidade Universitaria, Sao Paulo CEP 05508-000, Brazil [2].
          [2 ] 1] School of Geography, University of Leeds, Woodhouse Lane, Leeds LS9 2JT, UK [2].
          [3 ] 1] Global Monitoring Division, Earth System Research Laboratory, National Oceanic and Atmospheric Administration, 325 Broadway, Boulder, Colorado 80305, USA [2] Cooperative Institute for Research in Environmental Sciences (CIRES), University of Colorado, Boulder, Colorado 80309, USA [3].
          [4 ] Environmental Change Institute, School of Geography and the Environment, University of Oxford, South Parks Road, Oxford OX1 3QY, UK.
          [5 ] Instituto de Pesquisas Energéticas e Nucleares (IPEN)-Comissao Nacional de Energia Nuclear (CNEN)-Atmospheric Chemistry Laboratory, 2242 Avenida Professor Lineu Prestes, Cidade Universitaria, Sao Paulo CEP 05508-000, Brazil.
          [6 ] Center for Weather Forecasts and Climate Studies, Instituto Nacional de Pesquisas Espaciais (INPE), Rodovia Dutra, km 39, Cachoeira Paulista CEP 12630-000, Brazil.
          [7 ] 1] Environmental Change Institute, School of Geography and the Environment, University of Oxford, South Parks Road, Oxford OX1 3QY, UK [2] Remote Sensing Division, INPE (National Institute for Space Research), 1758 Avenida dos Astronautas, São José dos Campos CEP 12227-010, Brazil.
          [8 ] Departamento de Ciencias Atmosfericas/Instituto de Astronomia e Geofisica (IAG)/Universidade de Sao Paulo, 1226 Rua do Matao, Cidade Universitaria, Sao Paulo CEP 05508-090, Brazil.
          [9 ] Crew Building, The King's Buildings, West Mains Road, Edinburgh EH9 3JN, UK.
          [10 ] School of Geography, University of Leeds, Woodhouse Lane, Leeds LS9 2JT, UK.
          [11 ] 1] School of Tropical and Marine Biology and Centre for Terrestrial Environmental and Sustainability Sciences, James Cook University, Cairns 4870, Queensland, Australia [2] Imperial College London, Silwood Park Campus, Buckhurst Road, Ascot SL5 7PY, Berkshire, UK.
          Article
          nature12957
          10.1038/nature12957
          24499918
          d6332f2a-3108-40a8-95b1-05e54187975d
          History

          Comments

          Comment on this article