140
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Spatial analysis and GIS in the study of COVID-19. A review

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          This study entailed a review of 63 scientific articles on geospatial and spatial-statistical analysis of the geographical dimension of the 2019 coronavirus disease (COVID-19) pandemic. The diversity of themes identified in this paper can be grouped into the following categories of disease mapping: spatiotemporal analysis, health and social geography, environmental variables, data mining, and web-based mapping. Understanding the spatiotemporal dynamics of COVID-19 is essential for its mitigation, as it helps to clarify the extent and impact of the pandemic and can aid decision making, planning and community action. Health geography highlights the interaction of public health officials, affected actors and first responders to improve estimations of disease propagation and likelihoods of new outbreaks. Attempts at interdisciplinary correlation examine health policy interventions for the siting of health/sanitary services and controls, mapping/tracking of human movement, formulation of appropriate scientific and political responses and projection of spatial diffusion and temporal trends. This review concludes that, to fight COVID-19, it is important to face the challenges from an interdisciplinary perspective, with proactive planning, international solidarity and a global perspective. This review provides useful information and insight that can support future bibliographic queries, and also serves as a resource for understanding the evolution of tools used in the management of this major global pandemic of the 21 Century. It is hoped that its findings will inspire new reflections on the COVID-19 pandemic by readers.

          Graphical abstract

          Highlights

          • Data processed with GIS and spatial statistics are important to study COVID-19.

          • Decision making is the principle objective of COVID-19 studies with GIS.

          • Geographical aspects of the study of COVID-19 can be grouped into five categories.

          • COVID-19 requires an interdisciplinary approach with a global perspective.

          • Health geography has a critical perspective that can help vulnerable populations.

          Related collections

          Most cited references90

          • Record: found
          • Abstract: found
          • Article: not found

          Clinical Characteristics of Coronavirus Disease 2019 in China

          Abstract Background Since December 2019, when coronavirus disease 2019 (Covid-19) emerged in Wuhan city and rapidly spread throughout China, data have been needed on the clinical characteristics of the affected patients. Methods We extracted data regarding 1099 patients with laboratory-confirmed Covid-19 from 552 hospitals in 30 provinces, autonomous regions, and municipalities in mainland China through January 29, 2020. The primary composite end point was admission to an intensive care unit (ICU), the use of mechanical ventilation, or death. Results The median age of the patients was 47 years; 41.9% of the patients were female. The primary composite end point occurred in 67 patients (6.1%), including 5.0% who were admitted to the ICU, 2.3% who underwent invasive mechanical ventilation, and 1.4% who died. Only 1.9% of the patients had a history of direct contact with wildlife. Among nonresidents of Wuhan, 72.3% had contact with residents of Wuhan, including 31.3% who had visited the city. The most common symptoms were fever (43.8% on admission and 88.7% during hospitalization) and cough (67.8%). Diarrhea was uncommon (3.8%). The median incubation period was 4 days (interquartile range, 2 to 7). On admission, ground-glass opacity was the most common radiologic finding on chest computed tomography (CT) (56.4%). No radiographic or CT abnormality was found in 157 of 877 patients (17.9%) with nonsevere disease and in 5 of 173 patients (2.9%) with severe disease. Lymphocytopenia was present in 83.2% of the patients on admission. Conclusions During the first 2 months of the current outbreak, Covid-19 spread rapidly throughout China and caused varying degrees of illness. Patients often presented without fever, and many did not have abnormal radiologic findings. (Funded by the National Health Commission of China and others.)
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            An interactive web-based dashboard to track COVID-19 in real time

            In December, 2019, a local outbreak of pneumonia of initially unknown cause was detected in Wuhan (Hubei, China), and was quickly determined to be caused by a novel coronavirus, 1 namely severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The outbreak has since spread to every province of mainland China as well as 27 other countries and regions, with more than 70 000 confirmed cases as of Feb 17, 2020. 2 In response to this ongoing public health emergency, we developed an online interactive dashboard, hosted by the Center for Systems Science and Engineering (CSSE) at Johns Hopkins University, Baltimore, MD, USA, to visualise and track reported cases of coronavirus disease 2019 (COVID-19) in real time. The dashboard, first shared publicly on Jan 22, illustrates the location and number of confirmed COVID-19 cases, deaths, and recoveries for all affected countries. It was developed to provide researchers, public health authorities, and the general public with a user-friendly tool to track the outbreak as it unfolds. All data collected and displayed are made freely available, initially through Google Sheets and now through a GitHub repository, along with the feature layers of the dashboard, which are now included in the Esri Living Atlas. The dashboard reports cases at the province level in China; at the city level in the USA, Australia, and Canada; and at the country level otherwise. During Jan 22–31, all data collection and processing were done manually, and updates were typically done twice a day, morning and night (US Eastern Time). As the outbreak evolved, the manual reporting process became unsustainable; therefore, on Feb 1, we adopted a semi-automated living data stream strategy. Our primary data source is DXY, an online platform run by members of the Chinese medical community, which aggregates local media and government reports to provide cumulative totals of COVID-19 cases in near real time at the province level in China and at the country level otherwise. Every 15 min, the cumulative case counts are updated from DXY for all provinces in China and for other affected countries and regions. For countries and regions outside mainland China (including Hong Kong, Macau, and Taiwan), we found DXY cumulative case counts to frequently lag behind other sources; we therefore manually update these case numbers throughout the day when new cases are identified. To identify new cases, we monitor various Twitter feeds, online news services, and direct communication sent through the dashboard. Before manually updating the dashboard, we confirm the case numbers with regional and local health departments, including the respective centres for disease control and prevention (CDC) of China, Taiwan, and Europe, the Hong Kong Department of Health, the Macau Government, and WHO, as well as city-level and state-level health authorities. For city-level case reports in the USA, Australia, and Canada, which we began reporting on Feb 1, we rely on the US CDC, the government of Canada, the Australian Government Department of Health, and various state or territory health authorities. All manual updates (for countries and regions outside mainland China) are coordinated by a team at Johns Hopkins University. The case data reported on the dashboard aligns with the daily Chinese CDC 3 and WHO situation reports 2 for within and outside of mainland China, respectively (figure ). Furthermore, the dashboard is particularly effective at capturing the timing of the first reported case of COVID-19 in new countries or regions (appendix). With the exception of Australia, Hong Kong, and Italy, the CSSE at Johns Hopkins University has reported newly infected countries ahead of WHO, with Hong Kong and Italy reported within hours of the corresponding WHO situation report. Figure Comparison of COVID-19 case reporting from different sources Daily cumulative case numbers (starting Jan 22, 2020) reported by the Johns Hopkins University Center for Systems Science and Engineering (CSSE), WHO situation reports, and the Chinese Center for Disease Control and Prevention (Chinese CDC) for within (A) and outside (B) mainland China. Given the popularity and impact of the dashboard to date, we plan to continue hosting and managing the tool throughout the entirety of the COVID-19 outbreak and to build out its capabilities to establish a standing tool to monitor and report on future outbreaks. We believe our efforts are crucial to help inform modelling efforts and control measures during the earliest stages of the outbreak.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found

              Multidisciplinary research priorities for the COVID-19 pandemic: a call for action for mental health science

              Summary The coronavirus disease 2019 (COVID-19) pandemic is having a profound effect on all aspects of society, including mental health and physical health. We explore the psychological, social, and neuroscientific effects of COVID-19 and set out the immediate priorities and longer-term strategies for mental health science research. These priorities were informed by surveys of the public and an expert panel convened by the UK Academy of Medical Sciences and the mental health research charity, MQ: Transforming Mental Health, in the first weeks of the pandemic in the UK in March, 2020. We urge UK research funding agencies to work with researchers, people with lived experience, and others to establish a high level coordination group to ensure that these research priorities are addressed, and to allow new ones to be identified over time. The need to maintain high-quality research standards is imperative. International collaboration and a global perspective will be beneficial. An immediate priority is collecting high-quality data on the mental health effects of the COVID-19 pandemic across the whole population and vulnerable groups, and on brain function, cognition, and mental health of patients with COVID-19. There is an urgent need for research to address how mental health consequences for vulnerable groups can be mitigated under pandemic conditions, and on the impact of repeated media consumption and health messaging around COVID-19. Discovery, evaluation, and refinement of mechanistically driven interventions to address the psychological, social, and neuroscientific aspects of the pandemic are required. Rising to this challenge will require integration across disciplines and sectors, and should be done together with people with lived experience. New funding will be required to meet these priorities, and it can be efficiently leveraged by the UK's world-leading infrastructure. This Position Paper provides a strategy that may be both adapted for, and integrated with, research efforts in other countries.
                Bookmark

                Author and article information

                Journal
                Sci Total Environ
                Sci Total Environ
                The Science of the Total Environment
                The Author(s). Published by Elsevier B.V.
                0048-9697
                1879-1026
                8 June 2020
                15 October 2020
                8 June 2020
                : 739
                : 140033
                Affiliations
                [a ]Universidad Nacional Autónoma de México, Escuela Nacional de Estudios Superiores, Morelia 58190, Michoacan, Mexico
                [b ]Universidad Nacional Autónoma de México, Centro de Investigaciones en Geografía Ambiental, Morelia 58190, Michoacan, Mexico
                [c ]University of Nottingham Malaysia Campus, Faculty of Science and Engineering, Semenyih 43500, Selangor Darul Ehsan, Malaysia
                Author notes
                [* ]Corresponding authors at: UNAM, Morelia Campus, Antigua Carretera a Patzcuaro 8701, Morelia 58190, Michoacán, Mexico.
                Article
                S0048-9697(20)33553-1 140033
                10.1016/j.scitotenv.2020.140033
                7832930
                32534320
                d6336fa7-5d36-4751-8d9e-8ed2feac62ce
                © 2020 The Author(s)

                Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.

                History
                : 8 May 2020
                : 4 June 2020
                : 4 June 2020
                Categories
                Article

                General environmental science
                covid-19,geographical dimensions,spatiotemporal analyst,health geography,interdisciplinary correlation,data mining and web-base

                Comments

                Comment on this article