Blog
About

  • Record: found
  • Abstract: found
  • Article: found
Is Open Access

Genetic parameters for drought-tolerance in cassava Translated title: Parâmetros genéticos da mandioca quanto à tolerância ao deficit hídrico

Read this article at

Bookmark
      There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

      Abstract

      The objective of this work was to evaluate the effect of drought on genetic parameters and breeding values of cassava. The experiments were carried out in a completely randomized block design with three replicates, under field conditions with (WD) or without (FI) water deficit. Yield of storage roots (RoY), shoot (ShY), and starch (StY), as well as the number of roots (NR), and root dry matter content (DMC) were evaluated in 47 cassava accessions. Significant differences were observed among accessions; according to heritability, these differences had mostly a genetic nature. Heritability estimates for genotypic effects () ranged from 0.25±0.12 (NR) to 0.60±0.18 (DMC), and from 0.51±0.17 (NR) to 0.80±0.21 (RoY and StY) for WD and FI, respectively, as a consequence of greater environmental influence on WD. Selective accuracy was lower in WD, and ranged from 0.71 (NR) to 0.89 (RoY, DMC, and StY). However, genetic gains were quite high and ranged from 24.43% (DMC) to 113.41% (StY), in WD, and from 8.5% (DMC) to 75.70% (StY) in FI. These genetic parameters may be useful for defining which selection strategies, breeding methods, and experimental designs are more suitable to obtain cassava genetic gains for tolerance to drought.

      Translated abstract

      O objetivo deste trabalho foi avaliar o efeito do deficit hídrico sobre os parâmetros e os valores genéticos da mandioca. Os experimentos foram realizados em delineamento de blocos ao acaso com três repetições, em campo com (CD) ou sem deficit hídrico (SD). A produtividade de raízes (PR), da parte aérea (PA) e de amido (PAM), assim como o número de raízes (NR) e a massa de matéria seca das raízes (MS) foram avaliados em 47 acessos de mandioca. Observaram-se diferenças significativas entre os acessos; conforme a herdabilidade, estas diferenças foram em sua maioria de natureza genética. As estimativas de herdabilidade dos efeitos genotípicos () variaram de 0,25±0,12 (NR) a 0,60±0,18 (MS) e de 0,51±0,17 (NR) a 0,80±0,21 (PR e PAM) para CD e SD, respectivamente, em decorrência da maior influência ambiental sobre o CD. A acurácia seletiva foi menor no CD, com variação de 0,71 (NR) a 0,89 (PR, MS e PAM). No entanto, os ganhos genéticos foram elevados, de 24,43% (MS) a 113,41% (PAM) no CD, e de 8,5% (MS) a 75,70% (PAM) no SD. Estes parâmetros genéticos podem ser úteis para definir estratégias de seleção, métodos de melhoramento e delineamentos experimentais mais apropriados, para a obtenção de ganhos genéticos em mandioca quanto à tolerância à seca.

      Related collections

      Most cited references 21

      • Record: found
      • Abstract: not found
      • Article: not found

      Selegen-REML/BLUP: Sistema estatístico e seleção genética computadorizada via modelos lineares mistos

        Bookmark
        • Record: found
        • Abstract: found
        • Article: found
        Is Open Access

        Physiological characteristics of cassava tolerance to prolonged drought in the tropics: implications for breeding cultivars adapted to seasonally dry and semiarid environments

        The paper summarizes research conducted at International Center for Tropical Agriculture (CIAT) on responses of cassava to extended water shortages in the field aided by modern gas-exchange and water-relation techniques as well as biochemical assays. The aim of the research was to coordinate basic and applied aspects of crop physiology into a breeding strategy with a multidisciplinary approach. Several physiological characteristics/traits and mechanisms underpinning tolerance of cassava to drought were elucidated using a large number of genotypes from the CIAT core germplasm collection grown in various locations representing ecozones where cassava is cultivated. Most notable among these characteristics are the high photosynthetic capacity of cassava leaves in favorable environments and the maintenance of reasonable rates throughout prolonged water deficits, a crucial characteristic for high and sustainable productivity. Cassava possess a tight stomatal control over leaf gas exchange that reduces water losses when plants are subjected to soil water deficits as well as to high atmospheric evaporative demands, thus protecting leaves from severe dehydration. During prolonged water deficits, cassava reduces its canopy by shedding older leaves and forming smaller new leaves leading to less light interception, another adaptive trait to drought. Though root yield is reduced (but much less than the reduction in top growth) under water stress, the crop can recover when water becomes available by rapidly forming new canopy leaves with much higher photosynthetic rates compared to unstressed crops, thus compensating for yield losses with final yields approaching those in well-watered crops. Cassava can extract slowly water from deep soils, a characteristic of paramount importance in seasonally dry and semiarid environments where deeply stored water needs to be tapped. Screening large accessions under seasonally dry and semiarid environments showed that yield is significantly correlated with upper canopy leaf photosynthetic rates, and the association was attributed mainly to nonstomatal (anatomical/biochemical) factors. Parental materials with both high yields and photosynthetic rates were identified for incorporation into breeding and selection programs for cultivars adapted to prolonged drought coupled with high temperatures and dry air, conditions that might be further aggravated by global climate changes in tropical regions.
          Bookmark
          • Record: found
          • Abstract: found
          • Article: not found

          Quantitative trait loci controlling cyanogenic glucoside and dry matter content in cassava (Manihot esculenta Crantz) roots.

          Cassava (Manihot esculenta Crantz) is a starchy root crop grown in the tropics mainly by small-scale farmers even though agro-industrial processing is rapidly increasing. For this processing market improved varieties with high dry matter root content (DMC) is required. Potentially toxic cyanogenic glucosides are synthesized in the leaves and translocated to the roots. Selection for varieties with low cyanogenic glucoside potential (CNP) and high DMC is among the principal objectives in cassava breeding programs. However, these traits are highly influenced by the environmental conditions and the genetic control of these traits is not well understood. An S(1) population derived from a cross between two bred cassava varieties (MCOL 1684 and Rayong 1) that differ in CNP and DMC was used to study the heritability and genetic basis of these traits. A broad-sense heritability of 0.43 and 0.42 was found for CNP and DMC, respectively. The moderate heritabilities for DMC and CNP indicate that the phenotypic variation of these traits is explained by a genetic component. We found two quantitative trait loci (QTL) on two different linkage groups controlling CNP and six QTL on four different linkage groups controlling DMC. One QTL for CNP and one QTL for DMC mapped near each other, suggesting pleiotrophy and/or linkage of QTL. The two QTL for CNP showed additive effects while the six QTL for DMC showed additive effect, dominance or overdominance. This study is a first step towards developing molecular marker tools for efficient breeding of CNP and DMC in cassava.
            Bookmark

            Author and article information

            Affiliations
            [1 ] Embrapa Mandioca e Fruticultura Brazil
            [2 ] Embrapa Semiárido Brazil
            Contributors
            Role: ND
            Role: ND
            Role: ND
            Role: ND
            Role: ND
            Role: ND
            Journal
            pab
            Pesquisa Agropecuária Brasileira
            Pesq. agropec. bras.
            Embrapa Informação Tecnológica (Brasília )
            1678-3921
            March 2015
            : 50
            : 3
            : 233-241
            S0100-204X2015000300233
            10.1590/S0100-204X2015000300007

            http://creativecommons.org/licenses/by/4.0/

            Product
            Product Information: SciELO Brazil
            Categories
            AGRICULTURE, DAIRY & ANIMAL SCIENCE
            AGRICULTURE, MULTIDISCIPLINARY

            Comments

            Comment on this article