9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      A kirigami approach to engineering elasticity in nanocomposites through patterned defects

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Efforts to impart elasticity and multifunctionality in nanocomposites focus mainly on integrating polymeric and nanoscale components. Yet owing to the stochastic emergence and distribution of strain-concentrating defects and to the stiffening of nanoscale components at high strains, such composites often possess unpredictable strain-property relationships. Here, by taking inspiration from kirigami—the Japanese art of paper cutting—we show that a network of notches made in rigid nanocomposite and other composite sheets by top-down patterning techniques prevents unpredictable local failure and increases the ultimate strain of the sheets from 4 to 370%. We also show that the sheets' tensile behaviour can be accurately predicted through finite-element modelling. Moreover, in marked contrast to other stretchable conductors, the electrical conductance of the stretchable kirigami sheets is maintained over the entire strain regime, and we demonstrate their use to tune plasma-discharge phenomena. The unique properties of kirigami nanocomposites as plasma electrodes open up a wide range of novel technological solutions for stretchable electronics and optoelectronic devices, among other application possibilities.

          Related collections

          Most cited references24

          • Record: found
          • Abstract: not found
          • Article: not found

          Nature’s hierarchical materials

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Nanostructured artificial nacre.

            Finding a synthetic pathway to artificial analogs of nacre and bones represents a fundamental milestone in the development of composite materials. The ordered brick-and-mortar arrangement of organic and inorganic layers is believed to be the most essential strength- and toughness-determining structural feature of nacre. It has also been found that the ionic crosslinking of tightly folded macromolecules is equally important. Here, we demonstrate that both structural features can be reproduced by sequential deposition of polyelectrolytes and clays. This simple process results in a nanoscale version of nacre with alternating organic and inorganic layers. The macromolecular folding effect reveals itself in the unique saw-tooth pattern of differential stretching curves attributed to the gradual breakage of ionic crosslinks in polyelectrolyte chains. The tensile strength of the prepared multilayers approached that of nacre, whereas their ultimate Young modulus was similar to that of lamellar bones. Structural and functional resemblance makes clay- polyelectrolyte multilayers a close replica of natural biocomposites. Their nanoscale nature enables elucidation of molecular processes occurring under stress.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Highly conductive, printable and stretchable composite films of carbon nanotubes and silver.

              Conductive films that are both stretchable and flexible could have applications in electronic devices, sensors, actuators and speakers. A substantial amount of research has been carried out on conductive polymer composites, metal electrode-integrated rubber substrates and materials based on carbon nanotubes and graphene. Here we present highly conductive, printable and stretchable hybrid composites composed of micrometre-sized silver flakes and multiwalled carbon nanotubes decorated with self-assembled silver nanoparticles. The nanotubes were used as one-dimensional, flexible and conductive scaffolds to construct effective electrical networks among the silver flakes. The nanocomposites, which included polyvinylidenefluoride copolymer, were created with a hot-rolling technique, and the maximum conductivities of the hybrid silver-nanotube composites were 5,710 S cm⁻¹ at 0% strain and 20 S cm⁻¹ at 140% strain, at which point the film ruptured. Three-dimensional percolation theory reveals that Poisson's ratio for the composite is a key parameter in determining how the conductivity changes upon stretching.
                Bookmark

                Author and article information

                Journal
                Nature Materials
                Nature Mater
                Springer Science and Business Media LLC
                1476-1122
                1476-4660
                August 2015
                June 22 2015
                August 2015
                : 14
                : 8
                : 785-789
                Article
                10.1038/nmat4327
                26099109
                d64f1d89-84c9-4db7-bcee-b39a3e4b6b85
                © 2015

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article