0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      A DFT study of hydrogen adsorption on Pt modified carbon nanocone structures: Effects of modification and inclination of angles

      ,
      International Journal of Hydrogen Energy
      Elsevier BV

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references62

          • Record: found
          • Abstract: found
          • Article: not found

          Multiwfn: a multifunctional wavefunction analyzer.

          Multiwfn is a multifunctional program for wavefunction analysis. Its main functions are: (1) Calculating and visualizing real space function, such as electrostatic potential and electron localization function at point, in a line, in a plane or in a spatial scope. (2) Population analysis. (3) Bond order analysis. (4) Orbital composition analysis. (5) Plot density-of-states and spectrum. (6) Topology analysis for electron density. Some other useful utilities involved in quantum chemistry studies are also provided. The built-in graph module enables the results of wavefunction analysis to be plotted directly or exported to high-quality graphic file. The program interface is very user-friendly and suitable for both research and teaching purpose. The code of Multiwfn is substantially optimized and parallelized. Its efficiency is demonstrated to be significantly higher than related programs with the same functions. Five practical examples involving a wide variety of systems and analysis methods are given to illustrate the usefulness of Multiwfn. The program is free of charge and open-source. Its precompiled file and source codes are available from http://multiwfn.codeplex.com. Copyright © 2011 Wiley Periodicals, Inc.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Self-Consistent Equations Including Exchange and Correlation Effects

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Revealing noncovalent interactions.

              Molecular structure does not easily identify the intricate noncovalent interactions that govern many areas of biology and chemistry, including design of new materials and drugs. We develop an approach to detect noncovalent interactions in real space, based on the electron density and its derivatives. Our approach reveals the underlying chemistry that compliments the covalent structure. It provides a rich representation of van der Waals interactions, hydrogen bonds, and steric repulsion in small molecules, molecular complexes, and solids. Most importantly, the method, requiring only knowledge of the atomic coordinates, is efficient and applicable to large systems, such as proteins or DNA. Across these applications, a view of nonbonded interactions emerges as continuous surfaces rather than close contacts between atom pairs, offering rich insight into the design of new and improved ligands.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                Journal
                International Journal of Hydrogen Energy
                International Journal of Hydrogen Energy
                Elsevier BV
                03603199
                July 2023
                July 2023
                : 48
                : 60
                : 23077-23088
                Article
                10.1016/j.ijhydene.2023.01.240
                d6505ffc-1957-400f-bb85-0c098c6054f8
                © 2023

                https://www.elsevier.com/tdm/userlicense/1.0/

                History

                Comments

                Comment on this article