45
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      MAPPER: a search engine for the computational identification of putative transcription factor binding sites in multiple genomes

      product-review
      1 , 1 , 1 ,
      BMC Bioinformatics
      BioMed Central

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Cis-regulatory modules are combinations of regulatory elements occurring in close proximity to each other that control the spatial and temporal expression of genes. The ability to identify them in a genome-wide manner depends on the availability of accurate models and of search methods able to detect putative regulatory elements with enhanced sensitivity and specificity.

          Results

          We describe the implementation of a search method for putative transcription factor binding sites (TFBSs) based on hidden Markov models built from alignments of known sites. We built 1,079 models of TFBSs using experimentally determined sequence alignments of sites provided by the TRANSFAC and JASPAR databases and used them to scan sequences of the human, mouse, fly, worm and yeast genomes. In several cases tested the method identified correctly experimentally characterized sites, with better specificity and sensitivity than other similar computational methods. Moreover, a large-scale comparison using synthetic data showed that in the majority of cases our method performed significantly better than a nucleotide weight matrix-based method.

          Conclusion

          The search engine, available at http://mapper.chip.org, allows the identification, visualization and selection of putative TFBSs occurring in the promoter or other regions of a gene from the human, mouse, fly, worm and yeast genomes. In addition it allows the user to upload a sequence to query and to build a model by supplying a multiple sequence alignment of binding sites for a transcription factor of interest. Due to its extensive database of models, powerful search engine and flexible interface, MAPPER represents an effective resource for the large-scale computational analysis of transcriptional regulation.

          Related collections

          Most cited references82

          • Record: found
          • Abstract: found
          • Article: not found

          Profile hidden Markov models.

          S. Eddy (1998)
          The recent literature on profile hidden Markov model (profile HMM) methods and software is reviewed. Profile HMMs turn a multiple sequence alignment into a position-specific scoring system suitable for searching databases for remotely homologous sequences. Profile HMM analyses complement standard pairwise comparison methods for large-scale sequence analysis. Several software implementations and two large libraries of profile HMMs of common protein domains are available. HMM methods performed comparably to threading methods in the CASP2 structure prediction exercise.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            TRANSFAC: transcriptional regulation, from patterns to profiles.

            The TRANSFAC database on eukaryotic transcriptional regulation, comprising data on transcription factors, their target genes and regulatory binding sites, has been extended and further developed, both in number of entries and in the scope and structure of the collected data. Structured fields for expression patterns have been introduced for transcription factors from human and mouse, using the CYTOMER database on anatomical structures and developmental stages. The functionality of Match, a tool for matrix-based search of transcription factor binding sites, has been enhanced. For instance, the program now comes along with a number of tissue-(or state-)specific profiles and new profiles can be created and modified with Match Profiler. The GENE table was extended and gained in importance, containing amongst others links to LocusLink, RefSeq and OMIM now. Further, (direct) links between factor and target gene on one hand and between gene and encoded factor on the other hand were introduced. The TRANSFAC public release is available at http://www.gene-regulation.com. For yeast an additional release including the latest data was made available separately as TRANSFAC Saccharomyces Module (TSM) at http://transfac.gbf.de. For CYTOMER free download versions are available at http://www.biobase.de:8080/index.html.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              JASPAR: an open-access database for eukaryotic transcription factor binding profiles.

              The analysis of regulatory regions in genome sequences is strongly based on the detection of potential transcription factor binding sites. The preferred models for representation of transcription factor binding specificity have been termed position-specific scoring matrices. JASPAR is an open-access database of annotated, high-quality, matrix-based transcription factor binding site profiles for multicellular eukaryotes. The profiles were derived exclusively from sets of nucleotide sequences experimentally demonstrated to bind transcription factors. The database is complemented by a web interface for browsing, searching and subset selection, an online sequence analysis utility and a suite of programming tools for genome-wide and comparative genomic analysis of regulatory regions. JASPAR is available at http://jaspar. cgb.ki.se.
                Bookmark

                Author and article information

                Journal
                BMC Bioinformatics
                BMC Bioinformatics
                BioMed Central (London )
                1471-2105
                2005
                30 March 2005
                : 6
                : 79
                Affiliations
                [1 ]Children's Hospital Informatics Program, Children's Hospital Boston, Harvard Medical School,300 Longwood Avenue, Boston, MA 02115, USA
                Article
                1471-2105-6-79
                10.1186/1471-2105-6-79
                1131891
                15799782
                d656dc8b-7670-4444-8598-d5832a5e32ba
                Copyright © 2005 Marinescu et al; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 6 August 2004
                : 30 March 2005
                Categories
                Software

                Bioinformatics & Computational biology
                Bioinformatics & Computational biology

                Comments

                Comment on this article