10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Metformin and Exercise in Type 2 Diabetes : Examining treatment modality interactions

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          OBJECTIVE

          To determine the effect of metformin on the acute metabolic response to submaximal exercise, the effect of exercise on plasma metformin concentrations, and the interaction between metformin and exercise on the subsequent response to a standardized meal.

          RESEARCH DESIGN AND METHODS

          Ten participants with type 2 diabetes were recruited for this randomized crossover study. Metformin or placebo was given for 28 days, followed by the alternate condition for 28 days. On the last 2 days of each condition, participants were assessed during a nonexercise and a subsequent exercise day. Exercise took place in the morning and involved a total of 35 min performed at three different submaximal intensities.

          RESULTS

          Metformin increased heart rate and plasma lactate during exercise (both P ≤ 0.01) but lowered respiratory exchange ratio ( P = 0.03) without affecting total energy expenditure, which suggests increased fat oxidation. Metformin plasma concentrations were greater at several, but not all, time points on the exercise day compared with the nonexercise day. The glycemic response to a standardized meal was reduced by metformin, but the reduction was attenuated when exercise was added (metformin × exercise interaction, P = 0.05). Glucagon levels were highest in the combined exercise and metformin condition.

          CONCLUSIONS

          This study reveals several ways by which metformin and exercise therapies can affect each other. By increasing heart rate, metformin could lead to the prescription of lower exercise workloads. Furthermore, under the tested conditions, exercise interfered with the glucose-lowering effect of metformin.

          Related collections

          Most cited references17

          • Record: found
          • Abstract: found
          • Article: not found

          AMPK and PPARdelta agonists are exercise mimetics.

          The benefits of endurance exercise on general health make it desirable to identify orally active agents that would mimic or potentiate the effects of exercise to treat metabolic diseases. Although certain natural compounds, such as reseveratrol, have endurance-enhancing activities, their exact metabolic targets remain elusive. We therefore tested the effect of pathway-specific drugs on endurance capacities of mice in a treadmill running test. We found that PPARbeta/delta agonist and exercise training synergistically increase oxidative myofibers and running endurance in adult mice. Because training activates AMPK and PGC1alpha, we then tested whether the orally active AMPK agonist AICAR might be sufficient to overcome the exercise requirement. Unexpectedly, even in sedentary mice, 4 weeks of AICAR treatment alone induced metabolic genes and enhanced running endurance by 44%. These results demonstrate that AMPK-PPARdelta pathway can be targeted by orally active drugs to enhance training adaptation or even to increase endurance without exercise.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Metabolic effects of metformin in non-insulin-dependent diabetes mellitus.

            The metabolic effects and mechanism of action of metformin are still poorly understood, despite the fact that it has been used to treat patients with non-insulin-dependent diabetes mellitus (NIDDM) for more than 30 years. In 10 obese patients with NIDDM, we used a combination of isotope dilution, indirect calorimetry, bioimpedance, and tissue-balance techniques to assess the effects of metformin on systemic lactate, glucose, and free-fatty-acid turnover; lactate oxidation and the conversion of lactate to glucose; skeletal-muscle glucose and lactate metabolism; body composition; and energy expenditure before and after four months of treatment. Metformin treatment decreased the mean (+/- SD) glycosylated hemoglobin value from 13.2 +/- 2.2 percent to 10.5 +/- 1.6 percent (P < 0.001) and reduced fasting plasma glucose concentrations from 220 +/- 41 to 155 +/- 28 mg per deciliter (12.2 +/- 0.7 to 8.6 +/- 0.5 mmol per liter) (P < 0.001). Although resting energy expenditure did not change, the patients lost 2.7 +/- 1.3 kg of weight (P < 0.001), 88 percent of which was adipose tissue. The mean (+/- SE) rate of plasma glucose turnover (hepatic glucose output and systemic glucose disposal) decreased from 2.8 +/- 0.2 to 2.0 +/- 0.2 mg per kilogram of body weight per minute (15.3 +/- 0.9 to 10.8 +/- 0.9 mumol per kilogram per minute) (P < 0.001), as a result of a decrease in hepatic glucose output; systemic glucose clearance did not change. The rate of conversion of lactate to glucose (gluconeogenesis) decreased by 37 percent (P < 0.001), whereas lactate oxidation increased by 25 percent (P < 0.001). There were no changes in the plasma lactate concentration, plasma lactate turnover, muscle lactate release, plasma free-fatty-acid turnover, or uptake of glucose by muscle. Metformin acts primarily by decreasing hepatic glucose output, largely by inhibiting gluconeogenesis. It also seems to induce weight loss, preferentially involving adipose tissue.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The role of alpha-cell dysregulation in fasting and postprandial hyperglycemia in type 2 diabetes and therapeutic implications.

              The hyperglycemic activity of pancreatic extracts was encountered some 80 yr ago during efforts to optimize methods for the purification of insulin. The hyperglycemic substance was named "glucagon," and it was subsequently determined that glucagon is a 29-amino acid peptide synthesized and released from pancreatic alpha-cells. This article begins with a brief overview of the discovery of glucagon and the contributions that somatostatin and a sensitive and selective assay for pancreatic (vs. gut) glucagon made to understanding the physiological and pathophysiological roles of glucagon. Studies utilizing these tools to establish the function of glucagon in normal nutrient homeostasis and to document a relative glucagon excess in type 2 diabetes mellitus (T2DM) and precursors thereof are then discussed. The evidence that glucagon excess contributes to the development and maintenance of fasting hyperglycemia and that failure to suppress glucagon secretion contributes to postprandial hyperglycemia is then reviewed. Although key human studies are emphasized, salient animal studies highlighting the importance of glucagon in normal and defective glucoregulation are also described. The past eight decades of research in this area have led to development of new therapeutic approaches to treating T2DM that have been shown to, or are expected to, improve glycemic control in patients with T2DM in part by improving alpha-cell function or by blocking glucagon action. Accordingly, this review ends with a discussion of the status and therapeutic potential of glucagon receptor antagonists, alpha-cell selective somatostatin agonists, glucagon-like peptide-1 agonists, and dipeptidyl peptidase-IV inhibitors. Our overall conclusions are that there is considerable evidence that relative hyperglucagonemia contributes to fasting and postprandial hyperglycemia in patients with T2DM, and there are several new and emerging pharmacotherapies that may improve glycemic control in part by ameliorating the hyperglycemic effects of this relative glucagon excess.
                Bookmark

                Author and article information

                Journal
                Diabetes Care
                diacare
                dcare
                Diabetes Care
                Diabetes Care
                American Diabetes Association
                0149-5992
                1935-5548
                July 2011
                17 June 2011
                : 34
                : 7
                : 1469-1474
                Affiliations
                [1] 1Faculty of Physical Education and Recreation, University of Alberta, Edmonton, Canada
                [2] 2Centre for Nursing and Health Studies, Athabasca University, Athabasca, Canada
                [3] 3Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Canada
                [4] 4Faculty of Medicine, Division of Endocrinology, University of Alberta, Edmonton, Canada
                [5] 5Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Canada
                Author notes
                Corresponding author: Normand G. Boulé, nboule@ 123456ualberta.ca .
                Article
                2207
                10.2337/dc10-2207
                3120188
                21602430
                d65ca26a-76ad-485b-a897-da0613eed048
                © 2011 by the American Diabetes Association.

                Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered. See http://creativecommons.org/licenses/by-nc-nd/3.0/ for details.

                History
                : 29 November 2010
                : 7 April 2011
                Categories
                Original Research
                Clinical Care/Education/Nutrition/Psychosocial Research

                Endocrinology & Diabetes
                Endocrinology & Diabetes

                Comments

                Comment on this article