11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Coupling Krebs cycle metabolites to signalling in immunity and cancer

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          <p class="first" id="P1">Metabolic reprogramming has become a key focus for both immunologists and cancer biologists, with exciting advances providing new insights into underlying mechanisms of disease. Metabolites traditionally associated with bioenergetics or biosynthesis have been implicated in immunity and malignancy in transformed cells, with a particular focus on intermediates of the mitochondrial pathway known as the Krebs cycle. Among these, the intermediates succinate, fumarate, itaconate, 2-hydroxyglutarate isomers (D-2-hydroxyglutarate and L-2-hydroxyglutarate) and acetyl-CoA now have extensive evidence for “non-metabolic” signalling functions in both physiological immune contexts and in disease contexts, such as the initiation of carcinogenesis. This review will describe how metabolic reprogramming, with emphasis placed on these metabolites, leads to altered immune cell and transformed cell function. The latest findings are informative for new therapeutic approaches which could be transformative for a range of diseases. </p>

          Related collections

          Most cited references106

          • Record: found
          • Abstract: found
          • Article: not found

          Epigenetic programming of monocyte-to-macrophage differentiation and trained innate immunity.

          Monocyte differentiation into macrophages represents a cornerstone process for host defense. Concomitantly, immunological imprinting of either tolerance or trained immunity determines the functional fate of macrophages and susceptibility to secondary infections. We characterized the transcriptomes and epigenomes in four primary cell types: monocytes and in vitro-differentiated naïve, tolerized, and trained macrophages. Inflammatory and metabolic pathways were modulated in macrophages, including decreased inflammasome activation, and we identified pathways functionally implicated in trained immunity. β-glucan training elicits an exclusive epigenetic signature, revealing a complex network of enhancers and promoters. Analysis of transcription factor motifs in deoxyribonuclease I hypersensitive sites at cell-type-specific epigenetic loci unveiled differentiation and treatment-specific repertoires. Altogether, we provide a resource to understand the epigenetic changes that underlie innate immunity in humans. Copyright © 2014, American Association for the Advancement of Science.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythropoietin gene enhancer at a site required for transcriptional activation.

            We have identified a 50-nucleotide enhancer from the human erythropoietin gene 3'-flanking sequence which can mediate a sevenfold transcriptional induction in response to hypoxia when cloned 3' to a simian virus 40 promoter-chloramphenicol acetyltransferase reporter gene and transiently expressed in Hep3B cells. Nucleotides (nt) 1 to 33 of this sequence mediate sevenfold induction of reporter gene expression when present in two tandem copies compared with threefold induction when present in a single copy, suggesting that nt 34 to 50 bind a factor which amplifies the induction signal. DNase I footprinting demonstrated binding of a constitutive nuclear factor to nt 26 to 48. Mutagenesis studies revealed that nt 4 to 12 and 19 to 23 are essential for induction, as substitutions at either site eliminated hypoxia-induced expression. Electrophoretic mobility shift assays identified a nuclear factor which bound to a probe spanning nt 1 to 18 but not to a probe containing a mutation which eliminated enhancer function. Factor binding was induced by hypoxia, and its induction was sensitive to cycloheximide treatment. We have thus defined a functionally tripartite, 50-nt hypoxia-inducible enhancer which binds several nuclear factors, one of which is induced by hypoxia via de novo protein synthesis.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Aerobic glycolysis promotes T helper 1 cell differentiation through an epigenetic mechanism.

              Aerobic glycolysis (the Warburg effect) is a metabolic hallmark of activated T cells and has been implicated in augmenting effector T cell responses, including expression of the proinflammatory cytokine interferon-γ (IFN-γ), via 3' untranslated region (3'UTR)-mediated mechanisms. Here, we show that lactate dehydrogenase A (LDHA) is induced in activated T cells to support aerobic glycolysis but promotes IFN-γ expression independently of its 3'UTR. Instead, LDHA maintains high concentrations of acetyl-coenzyme A to enhance histone acetylation and transcription of Ifng Ablation of LDHA in T cells protects mice from immunopathology triggered by excessive IFN-γ expression or deficiency of regulatory T cells. These findings reveal an epigenetic mechanism by which aerobic glycolysis promotes effector T cell differentiation and suggest that LDHA may be targeted therapeutically in autoinflammatory diseases.
                Bookmark

                Author and article information

                Journal
                Nature Metabolism
                Nat Metab
                Springer Nature
                2522-5812
                January 2019
                December 30 2018
                January 2019
                : 1
                : 1
                : 16-33
                Article
                10.1038/s42255-018-0014-7
                6485344
                31032474
                d66685dc-aa77-4a7f-bb77-92a323f17393
                © 2019

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article