1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Adjunctive Nd:YAG laser application in chronic periodontitis: clinical, immunological, and microbiological aspects

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references31

          • Record: found
          • Abstract: found
          • Article: not found

          Reactive oxygen species and antioxidants in inflammatory diseases.

          This paper aims to review the rôle of free radical-induced tissue damage and antioxidant defence mechanisms in inflammatory diseases that involve pathogenic processes similar to the periodontal diseases. There is a clearly defined and substantial role for free radicals or reactive oxygen species (ROS) in periodontitis, but little research has been performed in this area. This paper reviews the considerable data available relating ROS activity and antioxidant defence to inflammatory diseases and attempts to draw parallels with periodontitis, in an effort to stimulate more periodontal research in this important area. The recent discovery of the transcription factor nuclear factor kappa B (NF-kappa B) is reviewed and several potential pathways for cytokine-induced periodontal tissue damage, mediated by NF-kappa B1 are discussed. Emphasis is placed on cytokines that have been studied in periodontitis, principally TNF-alpha, IL-1, IL-6, IL-8 and beta-interferon. The link between cellular production of such important mediators of inflammation and the antioxidant (AO) thiols, cysteine and reduced glutathione (GSH), is discussed and it is hypothesised that NF-kappa B antagonists may offer important therapeutic benefits.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Stimulation of bone resorption and inhibition of bone formation in vitro by human tumour necrosis factors.

            When leukocytes are exposed to mitogens or antigens in vitro, they release bone-resorbing activity into the culture supernatants which can be detected by bioassay. Like many lymphocyte-monocyte products, this activity has been difficult to purify because of its low abundance in activated leukocyte cultures and the unwieldy bioassay required to detect biological activity. Partially purified preparations of this activity inhibit bone collagen synthesis in organ cultures of fetal rat calvariae. Recent data suggest that both activated lymphocytes and monocytes release factors which could contribute to this activity. Recently, monocyte-derived tumour necrosis factor alpha (TNF-alpha) and lymphocyte-derived tumour necrosis factor beta (TNF-beta) (previously called lymphotoxin), two multifunctional cytokines which have similar cytotoxic effects on neoplastic cell lines, have been purified to homogeneity and their complementary DNAs cloned and expressed in Escherichia coli. As both of these cytokines are likely to be present in activated leukocyte supernatants, we tested purified recombinant preparations for their effects on bone resorption and bone collagen synthesis in vitro, and report here that both cytokines at 10(-7) to 10(-9) M caused osteoclastic bone resorption and inhibited bone collagen synthesis. These data suggest that at least part of the bone-resorbing activity present in activated leukocyte culture supernatants may be due to these cytokines.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Lipid peroxidation: a possible role in the induction and progression of chronic periodontitis.

              Reactive oxygen species (ROS) are implicated in the destruction of the periodontium during inflammatory periodontal diseases. The imbalance in oxidant/antioxidant activity may be a key factor in the damaging effects of ROS. This study aimed to determine the lipid peroxidation levels in gingival crevicular fluid and saliva, and glutathione (GSH) and glutathione peroxidase (GPx) in saliva in patients with chronic periodontitis. Gingival crevicular fluid and saliva were collected from 13 patients and 9 healthy control subjects during the preliminary study, and from 21 patients during the subsequent study. Lipid peroxidation level, GSH level and GPx activity were determined by spectrophotometric assay. The preliminary study found that when comparing patients to healthy controls, the gingival crevicular fluid samples produced the following results, respectively: higher lipid peroxidation concentration (microm) (by sites: 167.55 vs. 53.71, p < 0.0001; by subjects: 151.99 vs. 50.66, p < 0.005) and total amount (pmol) (by sites: 93.02 vs. 8.47, p < 0.0001, by subjects: 80.44 vs. 7.84, p < 0.0005). In saliva samples, lower GSH concentration (microm) (373.04 vs. 606.67, p < 0.05), higher lipid peroxidation concentration (microm) (0.66 vs. 0.13, p < 0.0005), and no difference in GPx activity were found in patients than in those of healthy controls. The subsequent study showed statistically significant (p < 0.05) improvement of clinical periodontal parameters (plaque index, gingival index, probing attachment level, probing pocket depth and gingival crevicular fluid volume), decreases in gingival crevicular fluid lipid peroxidation levels (concentration and total amount) at the sites after the completion of phase 1 periodontal treatment. Similarly, the periodontal treatment resulted in a significant decrease of lipid peroxidation concentrations (p < 0.05), increase in GSH concentration (p < 0.001), and no change in GPx activity in saliva samples. The increased levels of lipid peroxidation may play a role in the inflammation and destruction of the periodontium in periodontitis.
                Bookmark

                Author and article information

                Journal
                Lasers in Medical Science
                Lasers Med Sci
                Springer Nature
                0268-8921
                1435-604X
                July 2011
                June 10 2010
                July 2011
                : 26
                : 4
                : 453-463
                Article
                10.1007/s10103-010-0795-8
                d6670c32-c5fa-479a-afb2-155441038e87
                © 2011
                History

                Comments

                Comment on this article