150
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Tissue Distribution of 5-Hydroxymethylcytosine and Search for Active Demethylation Intermediates

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          5–Hydroxymethylcytosine (hmC) was recently detected as the sixth base in mammalian tissue at so far controversial levels. The function of the modified base is currently unknown, but it is certain that the base is generated from 5-methylcytosine (mC). This fuels the hypothesis that it represents an intermediate of an active demethylation process, which could involve further oxidation of the hydroxymethyl group to a formyl or carboxyl group followed by either deformylation or decarboxylation. Here, we use an ultra-sensitive and accurate isotope based LC-MS method to precisely determine the levels of hmC in various mouse tissues and we searched for 5–formylcytosine (fC), 5-carboxylcytosine (caC), and 5–hydroxymethyluracil (hmU) as putative active demethylation intermediates. Our data suggest that an active oxidative mC demethylation pathway is unlikely to occur. Additionally, we show using HPLC-MS analysis and immunohistochemistry that hmC is present in all tissues and cell types with highest concentrations in neuronal cells of the CNS.

          Related collections

          Most cited references22

          • Record: found
          • Abstract: found
          • Article: not found

          Active DNA demethylation: many roads lead to Rome.

          DNA methylation is one of the best-characterized epigenetic modifications and has been implicated in numerous biological processes, including transposable element silencing, genomic imprinting and X chromosome inactivation. Compared with other epigenetic modifications, DNA methylation is thought to be relatively stable. Despite its role in long-term silencing, DNA methylation is more dynamic than originally thought as active DNA demethylation has been observed during specific stages of development. In the past decade, many enzymes have been proposed to carry out active DNA demethylation and growing evidence suggests that, depending on the context, this process may be achieved by multiple mechanisms. Insight into how DNA methylation is dynamically regulated will broaden our understanding of epigenetic regulation and have great implications in somatic cell reprogramming and regenerative medicine.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Genome-wide erasure of DNA methylation in mouse primordial germ cells is affected by AID deficiency.

            Epigenetic reprogramming including demethylation of DNA occurs in mammalian primordial germ cells (PGCs) and in early embryos, and is important for the erasure of imprints and epimutations, and the return to pluripotency. The extent of this reprogramming and its molecular mechanisms are poorly understood. We previously showed that the cytidine deaminases AID and APOBEC1 can deaminate 5-methylcytosine in vitro and in Escherichia coli, and in the mouse are expressed in tissues in which demethylation occurs. Here we profiled DNA methylation throughout the genome by unbiased bisulphite next generation sequencing in wild-type and AID-deficient mouse PGCs at embryonic day (E)13.5. Wild-type PGCs revealed marked genome-wide erasure of methylation to a level below that of methylation deficient (Np95(-/-), also called Uhrf1(-/-)) embryonic stem cells, with female PGCs being less methylated than male ones. By contrast, AID-deficient PGCs were up to three times more methylated than wild-type ones; this substantial difference occurred throughout the genome, with introns, intergenic regions and transposons being relatively more methylated than exons. Relative hypermethylation in AID-deficient PGCs was confirmed by analysis of individual loci in the genome. Our results reveal that erasure of DNA methylation in the germ line is a global process, hence limiting the potential for transgenerational epigenetic inheritance. AID deficiency interferes with genome-wide erasure of DNA methylation patterns, indicating that AID has a critical function in epigenetic reprogramming and potentially in restricting the inheritance of epimutations in mammals.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Active DNA demethylation mediated by DNA glycosylases.

              Active DNA demethylation is involved in many vital developmental and physiological processes of plants and animals. Recent genetic and biochemical studies in Arabidopsis have demonstrated that a subfamily of DNA glycosylases function to promote DNA demethylation through a base excision-repair pathway. These specialized bifunctional DNA glycosylases remove the 5-methylcytosine base and then cleave the DNA backbone at the abasic site, resulting in a gap that is then filled with an unmethylated cytosine nucleotide by as yet unknown DNA polymerase and ligase enzymes. Evidence suggests that active DNA demethylation in mammalian cells is also mediated at least in part by a base excision repair pathway where the AID/Apobec family of deaminases convert 5-methylcytosine to thymine followed by G/T mismatch repair by the DNA glycosylase MBD4 or TDG. This review also discusses other possible mechanisms of active DNA demethylation, how genome DNA methylation status might be sensed to regulate the expression of demethylase genes, and the targeting of demethylases by small RNAs.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2010
                23 December 2010
                : 5
                : 12
                : e15367
                Affiliations
                [1 ]Center for Integrated Protein Science (CiPSM) at the Department of Chemistry, Ludwig-Maximilians-University, Munich, Germany
                [2 ]Center for Integrated Protein Science (CiPSM) at the Department of Pharmacy, Ludwig-Maximilians-University, Munich, Germany
                University of Wales Bangor, United Kingdom
                Author notes

                Conceived and designed the experiments: TC MB M. Müller. Performed the experiments: DG M. Münzel M. Müller SM MW SK. Analyzed the data: TC DG M. Münzel SM M. Müller. Contributed reagents/materials/analysis tools: M. Münzel TB SK. Wrote the paper: TC M. Münzel DG.

                Article
                PONE-D-10-02654
                10.1371/journal.pone.0015367
                3009720
                21203455
                d66fdb96-3bc9-4d53-a324-c2e1046475b8
                Globisch et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 17 September 2010
                : 11 November 2010
                Page count
                Pages: 9
                Categories
                Research Article
                Biology
                Biochemistry
                Nucleic Acids
                DNA
                Nucleic Acid Components
                Synthetic Nucleic Acids
                Chemical Biology
                Chemistry
                Chemical Biology
                Organic Chemistry
                Organic Synthesis

                Uncategorized
                Uncategorized

                Comments

                Comment on this article