5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      High susceptibility to zoliflodacin and conserved target (GyrB) for zoliflodacin among 1209 consecutive clinical Neisseria gonorrhoeae isolates from 25 European countries, 2018

      1 , 1 , 2 , 3 , 4 , 2 , 5 , 1 , 1 , 4 , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , the European Collaborative Group
      Journal of Antimicrobial Chemotherapy
      Oxford University Press (OUP)

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Objectives

          Novel antimicrobials for treatment of gonorrhoea are imperative. The first-in-class spiropyrimidinetrione zoliflodacin is promising and currently in an international Phase 3 randomized controlled clinical trial (RCT) for treatment of uncomplicated gonorrhoea. We evaluated the in vitro activity of and the genetic conservation of the target (GyrB) and other potential zoliflodacin resistance determinants among 1209 consecutive clinical Neisseria gonorrhoeae isolates obtained from 25 EU/European Economic Area (EEA) countries in 2018 and compared the activity of zoliflodacin with that of therapeutic antimicrobials currently used.

          Methods

          MICs of zoliflodacin, ceftriaxone, cefixime, azithromycin and ciprofloxacin were determined using an agar dilution technique for zoliflodacin or using MIC gradient strip tests or an agar dilution technique for the other antimicrobials. Genome sequences were available for 96.1% of isolates.

          Results

          Zoliflodacin modal MIC, MIC50, MIC90 and MIC range were 0.125, 0.125, 0.125 and ≤0.004–0.5 mg/L, respectively. The resistance was 49.9%, 6.7%, 1.6% and 0.2% to ciprofloxacin, azithromycin, cefixime and ceftriaxone, respectively. Zoliflodacin did not show any cross-resistance to other tested antimicrobials. GyrB was highly conserved and no zoliflodacin gyrB resistance mutations were found. No fluoroquinolone target GyrA or ParC resistance mutations or mutations causing overexpression of the MtrCDE efflux pump substantially affected the MICs of zoliflodacin.

          Conclusions

          The in vitro susceptibility to zoliflodacin was high and the zoliflodacin target GyrB was conserved among EU/EEA gonococcal isolates in 2018. This study supports further clinical development of zoliflodacin. However, additional zoliflodacin data regarding particularly the treatment of pharyngeal gonorrhoea, pharmacokinetics/pharmacodynamics and resistance selection, including suppression, would be valuable.

          Related collections

          Most cited references40

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Chlamydia, gonorrhoea, trichomoniasis and syphilis: global prevalence and incidence estimates, 2016

          Abstract Objective To generate estimates of the global prevalence and incidence of urogenital infection with chlamydia, gonorrhoea, trichomoniasis and syphilis in women and men, aged 15–49 years, in 2016. Methods For chlamydia, gonorrhoea and trichomoniasis, we systematically searched for studies conducted between 2009 and 2016 reporting prevalence. We also consulted regional experts. To generate estimates, we used Bayesian meta-analysis. For syphilis, we aggregated the national estimates generated by using Spectrum-STI. Findings For chlamydia, gonorrhoea and/or trichomoniasis, 130 studies were eligible. For syphilis, the Spectrum-STI database contained 978 data points for the same period. The 2016 global prevalence estimates in women were: chlamydia 3.8% (95% uncertainty interval, UI: 3.3–4.5); gonorrhoea 0.9% (95% UI: 0.7–1.1); trichomoniasis 5.3% (95% UI:4.0–7.2); and syphilis 0.5% (95% UI: 0.4–0.6). In men prevalence estimates were: chlamydia 2.7% (95% UI: 1.9–3.7); gonorrhoea 0.7% (95% UI: 0.5–1.1); trichomoniasis 0.6% (95% UI: 0.4–0.9); and syphilis 0.5% (95% UI: 0.4–0.6). Total estimated incident cases were 376.4 million: 127.2 million (95% UI: 95.1–165.9 million) chlamydia cases; 86.9 million (95% UI: 58.6–123.4 million) gonorrhoea cases; 156.0 million (95% UI: 103.4–231.2 million) trichomoniasis cases; and 6.3 million (95% UI: 5.5–7.1 million) syphilis cases. Conclusion Global estimates of prevalence and incidence of these four curable sexually transmitted infections remain high. The study highlights the need to expand data collection efforts at country level and provides an initial baseline for monitoring progress of the World Health Organization global health sector strategy on sexually transmitted infections 2016–2021.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Antimicrobial resistance in Neisseria gonorrhoeae in the 21st century: past, evolution, and future.

            Neisseria gonorrhoeae is evolving into a superbug with resistance to previously and currently recommended antimicrobials for treatment of gonorrhea, which is a major public health concern globally. Given the global nature of gonorrhea, the high rate of usage of antimicrobials, suboptimal control and monitoring of antimicrobial resistance (AMR) and treatment failures, slow update of treatment guidelines in most geographical settings, and the extraordinary capacity of the gonococci to develop and retain AMR, it is likely that the global problem of gonococcal AMR will worsen in the foreseeable future and that the severe complications of gonorrhea will emerge as a silent epidemic. By understanding the evolution, emergence, and spread of AMR in N. gonorrhoeae, including its molecular and phenotypic mechanisms, resistance to antimicrobials used clinically can be anticipated, future methods for genetic testing for AMR might permit region-specific and tailor-made antimicrobial therapy, and the design of novel antimicrobials to circumvent the resistance problems can be undertaken more rationally. This review focuses on the history and evolution of gonorrhea treatment regimens and emerging resistance to them, on genetic and phenotypic determinants of gonococcal resistance to previously and currently recommended antimicrobials, including biological costs or benefits; and on crucial actions and future advances necessary to detect and treat resistant gonococcal strains and, ultimately, retain gonorrhea as a treatable infection. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              ARIBA: rapid antimicrobial resistance genotyping directly from sequencing reads

              Antimicrobial resistance (AMR) is one of the major threats to human and animal health worldwide, yet few high-throughput tools exist to analyse and predict the resistance of a bacterial isolate from sequencing data. Here we present a new tool, ARIBA, that identifies AMR-associated genes and single nucleotide polymorphisms directly from short reads, and generates detailed and customizable output. The accuracy and advantages of ARIBA over other tools are demonstrated on three datasets from Gram-positive and Gram-negative bacteria, with ARIBA outperforming existing methods.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                Journal of Antimicrobial Chemotherapy
                Oxford University Press (OUP)
                0305-7453
                1460-2091
                May 01 2021
                April 13 2021
                February 10 2021
                May 01 2021
                April 13 2021
                February 10 2021
                : 76
                : 5
                : 1221-1228
                Affiliations
                [1 ]WHO Collaborating Centre for Gonorrhoea and Other STIs, National Reference Laboratory for STIs, Department of Laboratory Medicine, Microbiology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
                [2 ]Centre for Genomic Pathogen Surveillance, Big Data Institute, Nuffield Department of Medicine, University of Oxford, Oxford, Oxfordshire, UK
                [3 ]Genomics and Health Area, Foundation for the Promotion of Health and Biomedical Research in the Valencian Community (FISABIO-Public Health), Valencia, Spain
                [4 ]National Infection Service, Public Health England, London, UK
                [5 ]Centre for Genomic Pathogen Surveillance, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, UK
                Article
                10.1093/jac/dkab024
                33564854
                d671e837-d1a3-4326-b14c-2e45c3deed6e
                © 2021

                https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model

                History

                Comments

                Comment on this article