Blog
About

0
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found

      Impact of Drain Effluent on Surficial Sediments in the Mediterranean Coastal Wetland: Sedimentological Characteristics and Metal Pollution Status at Lake Manzala, Egypt

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Surface sediments were collected from Lake Manzala, the Mediterranean coastal wetland located to the east of the Nile Delta, Egypt, to assess the effect of drain effluent on the spatial variations of sedimentary characteristics and heavy metal pollution. Grain-size compositions, textures, and heavy metal distribution patterns in sediments are presented using GIS technique. Results of the analysis of the sediment showed a clear effect of drain effluent, with an increase in fine fractions and homogeneous suspensions in transportation mode. Lake sediments were dominated by sandy mud textures, and mode of transportation was homogeneous suspension and rolling. Spatial distribution of heavy metals (Fe, Mn, Zn, Cu, Ni, Cr, and Pb) was studied in the lake’s surficial sediments, along with their relationship to drain effluent and their contamination status in the ecological system. Heavy metal pollution status was assessed by means of accepted sediment quality guidelines and contamination assessment methods (contamination factor, contamination degree, modified contamination degree, geo-accumulation, and enrichment factor). Among the determined heavy metals, Pb had the most ecological risk. Generally, the heavy metals in the surface sediments indicated pollution risk ranging from moderate to considerable, particularly, in those sites facing drains and inlets that had the highest toxic effluent. The results were interpreted by statistical means. A cluster analysis defined areas facing drain discharge and inlets as separated groups. ANOVA indicated that most of the sedimentation and studied metals directed this clustering.

          Related collections

          Author and article information

          Journal
          JOUC
          Journal of Ocean University of China
          Science Press and Springer (China )
          1672-5182
          06 July 2019
          01 October 2019
          : 18
          : 4
          : 834-848
          Affiliations
          1Geology Department, Faculty of Science, Suez University, El Salam City 43518, Egypt
          Author notes
          *Corresponding author: FARHAT Hassan I.
          Article
          s11802-019-3608-0
          10.1007/s11802-019-3608-0
          Copyright © Ocean University of China, Science Press and Springer-Verlag GmbH Germany 2019.

          The copyright to this article, including any graphic elements therein (e.g. illustrations, charts, moving images), is hereby assigned for good and valuable consideration to the editorial office of Journal of Ocean University of China, Science Press and Springer effective if and when the article is accepted for publication and to the extent assignable if assignability is restricted for by applicable law or regulations (e.g. for U.S. government or crown employees).

          Product
          Self URI (journal-page): https://www.springer.com/journal/11802

          Comments

          Comment on this article