37
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      MiR-494 Inhibits Epithelial Ovarian Cancer Growth by Targeting c-Myc

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Epithelial ovarian cancer (EOC) is the most lethal malignant gynecological cancer. MicroRNAs (miRNAs) play important roles in the pathogenesis of ovarian cancer. The role of miR-494 in EOC has not been fully investigated.

          Material/methods

          MiR-494 levels in ovarian cancer tissues and cells were tested by qRT-PCR. Cells were transfected with miR-494 mimics or miR-494 ASO by Lipofectamine. Bioinformatics algorithms from TargetScanHuman were used to predict the target genes of miR-494. The c-Myc protein level was assayed by Western blot. The interaction between miR-494 and c-Myc was confirmed by dual luciferase assays.

          Results

          MiR-494 showed low levels in EOC tissues and cells. Overexpression of miR-494 inhibited cell growth and migration of EOC cells and vice versa. c-Myc is the targeted gene of miR-494.

          Conclusions

          MiR-494 has an anti-tumor role in EOC via c-Myc.

          Related collections

          Most cited references37

          • Record: found
          • Abstract: found
          • Article: not found

          Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal.

          The cBioPortal for Cancer Genomics (http://cbioportal.org) provides a Web resource for exploring, visualizing, and analyzing multidimensional cancer genomics data. The portal reduces molecular profiling data from cancer tissues and cell lines into readily understandable genetic, epigenetic, gene expression, and proteomic events. The query interface combined with customized data storage enables researchers to interactively explore genetic alterations across samples, genes, and pathways and, when available in the underlying data, to link these to clinical outcomes. The portal provides graphical summaries of gene-level data from multiple platforms, network visualization and analysis, survival analysis, patient-centric queries, and software programmatic access. The intuitive Web interface of the portal makes complex cancer genomics profiles accessible to researchers and clinicians without requiring bioinformatics expertise, thus facilitating biological discoveries. Here, we provide a practical guide to the analysis and visualization features of the cBioPortal for Cancer Genomics.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Prediction of mammalian microRNA targets.

            MicroRNAs (miRNAs) can play important gene regulatory roles in nematodes, insects, and plants by basepairing to mRNAs to specify posttranscriptional repression of these messages. However, the mRNAs regulated by vertebrate miRNAs are all unknown. Here we predict more than 400 regulatory target genes for the conserved vertebrate miRNAs by identifying mRNAs with conserved pairing to the 5' region of the miRNA and evaluating the number and quality of these complementary sites. Rigorous tests using shuffled miRNA controls supported a majority of these predictions, with the fraction of false positives estimated at 31% for targets identified in human, mouse, and rat and 22% for targets identified in pufferfish as well as mammals. Eleven predicted targets (out of 15 tested) were supported experimentally using a HeLa cell reporter system. The predicted regulatory targets of mammalian miRNAs were enriched for genes involved in transcriptional regulation but also encompassed an unexpectedly broad range of other functions.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A dual-luciferase reporter system for studying recoding signals.

              A new reporter system has been developed for measuring translation coupling efficiency of recoding mechanisms such as frameshifting or readthrough. A recoding test sequence is cloned in between the renilla and firefly luciferase reporter genes and the two luciferase activities are subsequently measured in the same tube. The normalized ratio of the two activities is proportional to the efficiency with which the ribosome "reads" the recoding signal making the transition from one open reading frame to the next. The internal control from measuring both activities provides a convenient and reliable assay of efficiency. This is the first enzymatic dual reporter assay suitable for in vitro translation. Translation signals can be tested in vivo and in vitro from a single construct, which allows an intimate comparison between the two systems. The assay is applicable for high throughput screening procedures. The dual-luciferase reporter system has been applied to in vivo and in vitro recoding of HIV-1 gag-pol, MMTV gag-pro, MuLV gag-pol, and human antizyme.
                Bookmark

                Author and article information

                Journal
                Med Sci Monit
                Med. Sci. Monit
                Medical Science Monitor
                Medical Science Monitor : International Medical Journal of Experimental and Clinical Research
                International Scientific Literature, Inc.
                1234-1010
                1643-3750
                2016
                24 February 2016
                : 22
                : 617-624
                Affiliations
                Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
                Author notes
                Corresponding Author: Mingrong Xi, e-mail: qmrjzz@ 123456126.com
                [A]

                Study Design

                [B]

                Data Collection

                [C]

                Statistical Analysis

                [D]

                Data Interpretation

                [E]

                Manuscript Preparation

                [F]

                Literature Search

                [G]

                Funds Collection

                Article
                897288
                10.12659/MSM.897288
                4768945
                26908019
                d6739980-b471-4e2e-97ef-ecb31b8d4b09
                © Med Sci Monit, 2016

                This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License

                History
                : 27 December 2015
                : 18 January 2016
                Categories
                Lab/In Vitro Research

                cell growth processes,genes, myc,micrornas,ovarian neoplasms

                Comments

                Comment on this article