7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Mechanisms and Consequences of Oxygen and Carbon Dioxide Sensing in Mammals

      1 , 1 , 1
      Physiological Reviews
      American Physiological Society

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Molecular oxygen (O 2) and carbon dioxide (CO 2) are the primary gaseous substrate and product of oxidative phosphorylation in respiring organisms, respectively. Variance in the levels of either of these gasses outside of the physiological range presents a serious threat to cell, tissue, and organism survival. Therefore, it is essential that endogenous levels are monitored and kept at appropriate concentrations to maintain a state of homeostasis. Higher organisms such as mammals have evolved mechanisms to sense O 2 and CO 2 both in the circulation and in individual cells and elicit appropriate corrective responses to promote adaptation to commonly encountered conditions such as hypoxia and hypercapnia. These can be acute and transient nontranscriptional responses, which typically occur at the level of whole animal physiology or more sustained transcriptional responses, which promote chronic adaptation. In this review, we discuss the mechanisms by which mammals sense changes in O 2 and CO 2 and elicit adaptive responses to maintain homeostasis. We also discuss crosstalk between these pathways and how they may represent targets for therapeutic intervention in a range of pathological states.

          Related collections

          Most cited references185

          • Record: found
          • Abstract: found
          • Article: not found

          Control of translation and mRNA degradation by miRNAs and siRNAs.

          The control of translation and mRNA degradation is an important part of the regulation of gene expression. It is now clear that small RNA molecules are common and effective modulators of gene expression in many eukaryotic cells. These small RNAs that control gene expression can be either endogenous or exogenous micro RNAs (miRNAs) and short interfering RNAs (siRNAs) and can affect mRNA degradation and translation, as well as chromatin structure, thereby having impacts on transcription rates. In this review, we discuss possible mechanisms by which miRNAs control translation and mRNA degradation. An emerging theme is that miRNAs, and siRNAs to some extent, target mRNAs to the general eukaryotic machinery for mRNA degradation and translation control.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Metabolic Reprograming in Macrophage Polarization

            Studying the metabolism of immune cells in recent years has emphasized the tight link existing between the metabolic state and the phenotype of these cells. Macrophages in particular are a good example of this phenomenon. Whether the macrophage obtains its energy through glycolysis or through oxidative metabolism can give rise to different phenotypes. Classically activated or M1 macrophages are key players of the first line of defense against bacterial infections and are known to obtain energy through glycolysis. Alternatively activated or M2 macrophages on the other hand are involved in tissue repair and wound healing and use oxidative metabolism to fuel their longer-term functions. Metabolic intermediates, however, are not just a source of energy but can be directly implicated in a particular macrophage phenotype. In M1 macrophages, the Krebs cycle intermediate succinate regulates HIF1α, which is responsible for driving the sustained production of the pro-inflammatory cytokine IL1β. In M2 macrophages, the sedoheptulose kinase carbohydrate kinase-like protein is critical for regulating the pentose phosphate pathway. The potential to target these events and impact on disease is an exciting prospect.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Hypoxia-inducible factors, stem cells, and cancer.

              Regions of severe oxygen deprivation (hypoxia) arise in tumors due to rapid cell division and aberrant blood vessel formation. The hypoxia-inducible factors (HIFs) mediate transcriptional responses to localized hypoxia in normal tissues and in cancers and can promote tumor progression by altering cellular metabolism and stimulating angiogenesis. Recently, HIFs have been shown to activate specific signaling pathways such as Notch and the expression of transcription factors such as Oct4 that control stem cell self renewal and multipotency. As many cancers are thought to develop from a small number of transformed, self-renewing, and multipotent "cancer stem cells," these results suggest new roles for HIFs in tumor progression.
                Bookmark

                Author and article information

                Journal
                Physiological Reviews
                Physiological Reviews
                American Physiological Society
                0031-9333
                1522-1210
                January 01 2020
                January 01 2020
                : 100
                : 1
                : 463-488
                Affiliations
                [1 ]UCD Conway Institute, Systems Biology Ireland and the School of Medicine, University College Dublin, Belfield, Dublin, Ireland
                Article
                10.1152/physrev.00003.2019
                31539306
                d68aa82a-a164-476d-819c-d746da5a6ac3
                © 2020
                History

                Comments

                Comment on this article