24
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found

      Neuronal Elements in the Testis of the Rhesus Monkey: Ontogeny, Characterization and Relationship to Testicular Cells

      research-article

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Intrinsic neuron-like cells expressing the catecholamine-biosynthetic enzyme tyrosine hydroxylase (TH) were recently identified in the testis of the prepubertal rhesus monkey. In this study, we characterized the neuron-like nature of these cells and examined distribution and frequency of neuronal elements in the testes of monkeys during postnatal development, puberty and adulthood. Using immunohistochemical methods, we detected both nerve fibers and cell bodies, immunoreactive for the neuronal markers neurofilament 200 (NF-200) and synaptosomal associated protein of 25 kDa (SNAP-25), TH and neuropeptide Y (NPY) in perivascular locations, intermingled with interstitial cells and close to the wall of seminiferous tubules. Marked age-related differences in the numbers of these neuronal elements became apparent, when we quantified NF-200-immunoreactive neuronal elements. Thus, intrinsic neuron-like cell bodies were found only in the testes from immature animals (i.e., until about 3 years of age). Conversely, nerve fibers, presumably representing mainly the extrinsic innervation, were observed at all ages although they became more prominent after the pubertal increase in LH and testosterone levels. Interestingly, another testicular cell type known to contain potent regulatory substances, mast cells, was found to be in close anatomical proximity to nerve fibers. The number of these cells, positively identified with an antibody to tryptase, increased significantly after puberty following the same pattern as nerve fibers. These results confirm that the testicular nervous system of the monkey is composed of two components, intrinsic nerve cells and extrinsic fibers, both of which are catecholaminergic and peptidergic in nature. Furthermore, both components show a marked degree of plasticity during development, especially around the time of puberty. The intratesticular locations of neuron-like cells and fibers suggest that catecholamines and neuropeptides are likely to have multiple sites of actions, and may affect Leydig cells, cells of the tubular wall and vascular cells directly and/or indirectly via intermediation of mast cells.

          Related collections

          Most cited references7

          • Record: found
          • Abstract: found
          • Article: not found

          Neurotransmitters as growth regulatory signals: role of receptors and second messengers.

          In the adult nervous system, neurotransmitters act as chemical mediators of intercellular communication by the activation of specific receptors and second messengers in postsynaptic cells. This specialized role may have evolved from more primitive functions in lower organisms where these substances were used as both intra- and intercellular signalling devices. This view derives from the finding that a number of 'classical' neurotransmitters are present in primitive organisms and early embryos in the absence of a nervous system, and pharmacological evidence that these substances regulate morphogenetic activities such as proliferation, differentiation, cell motility and metamorphosis. These phylogenetically old functions may be reiterated in the developing nervous system and in the humoral functions of neurotransmitters outside the nervous system. This review will provide evidence for this hypothesis based on the commonality of signal transduction mechanisms used in primitive organisms, early embryos and non-neuronal cells, and relate these relationships to the functions of neurotransmitters in the developing nervous system. This discussion has generally been limited to neurotransmitters where non-neuronal functions have been studied and information regarding the involvement of receptors and second messenger pathways is available.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Mast cells increase in tissues of neonatal rats injected with the nerve growth factor.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: found

              Serotonin in Golden Hamster Testes: Testicular Levels, Immunolocalization and Role during Sexual Development and Photoperiodic Regression-Recrudescence Transition

              Serotonin (5-HT) is found in the gonads and accessory reproductive organs of several species. The golden (Syrian) hamster is a seasonal breeder. Exposure of male adult hamsters to short days for 14 weeks results in a severe gonadal regression, while after a photoinhibition period of 22 weeks a spontaneous testicular recrudescence occurs. The aim of this study was to investigate the presence of 5-HT and its major metabolite 5-hydroxyindoleacetic acid (5-HIAA) in the gonads of golden hamsters, its immunolocation and its physiological role in the testis. The influence of age and photoperiod was also analyzed. Hamsters of 23, 36, 46, 60 and 90 days of age were kept in long photoperiod (LP: 14:10 h light/dark), and adult animals were exposed either to LP or to short photoperiod (SP: 6:18 h light/dark) for 14 and 22 weeks. Testicular parenchyma and capsule levels of 5-HT and 5-HIAA increased significantly at ages of 36 and 60–90 days, but decreased markedly during the exposure of adult hamsters to SP for 14 and 22 weeks. Mast cells were found exclusively in the testicular capsule. The testicular number of mast cells increased concomitantly with age, but decreased in adult hamsters exposed to SP. Mast and Leydig cells presented 5-HT-positive immunoreactivity. During sexual maturation as well as during the transfer of adult hamsters from LP to SP, the 5-HIAA/5-HT ratio showed the highest values in active adult animals, indicating that the increase in testicular 5-HT levels in adulthood is accompanied by an augment in 5-HT turnover. In vitro basal and hCG-stimulated testosterone production was significantly inhibited in presence of physiological concentrations of 5-HT. In conclusion, the present studies demonstrate the existence of 5-HT in mast cells and Leydig cells of hamster testes, as well as describe an inhibitory action of this neurotransmitter on gonadal testosterone production. Furthermore, the age-dependent and photoperiodic-related changes detected in testicular 5-HT levels suggest that this neurotransmitter might act as an important local modulator of the action of gonadotropins on steroidogenesis during sexual development and during the photoperiodic regression-recrudescence transition in the golden hamster.
                Bookmark

                Author and article information

                Journal
                NEN
                Neuroendocrinology
                10.1159/issn.0028-3835
                Neuroendocrinology
                S. Karger AG
                0028-3835
                1423-0194
                2000
                January 2000
                14 January 2000
                : 71
                : 1
                : 43-50
                Affiliations
                aAnatomisches Institut, Technische Universität München, Deutschland; bInstituto de Biologia y Medicina Experimental, Buenos Aires, Argentina and cOregon Regional Primate Research Center-Oregon Health Sciences University, Division of Neuroscience, Beaverton, Oreg., USA
                Article
                54519 Neuroendocrinology 2000;71:43–50
                10.1159/000054519
                10644898
                d69934cd-7070-4b8f-bc24-ffdd51c3d3da
                © 2000 S. Karger AG, Basel

                Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher. Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug. Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

                History
                Page count
                Figures: 4, References: 67, Pages: 8
                Categories
                Gonadotropins and Gonadal Steroids

                Endocrinology & Diabetes,Neurology,Nutrition & Dietetics,Sexual medicine,Internal medicine,Pharmacology & Pharmaceutical medicine
                Mast cells,Catecholamines,Testis,Primates,Peripheral neuroendocrinology,Gonads

                Comments

                Comment on this article