18
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      Call for Papers: Green Renal Replacement Therapy: Caring for the Environment

      Submit here before July 31, 2024

      About Blood Purification: 3.0 Impact Factor I 5.6 CiteScore I 0.83 Scimago Journal & Country Rank (SJR)

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Matrix Metalloproteinases in Renal Diseases: A Critical Appraisal

      review-article

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Matrix metalloproteinases (MMPs) are endopeptidases within the metzincin protein family that not only cleave extracellular matrix (ECM) components, but also process the non-ECM molecules, including various growth factors and their binding proteins. MMPs participate in cell to ECM interactions, and MMPs are known to be involved in cell proliferation mechanisms and most probably apoptosis. These proteinases are grouped into six classes: collagenases, gelatinases, stromelysins, matrilysins, membrane type MMPs, and other MMPs. Various mechanisms regulate the activity of MMPs, inhibition by tissue inhibitors of metalloproteinases being the most important. In the kidney, intrinsic glomerular cells and tubular epithelial cells synthesize several MMPs. The measurement of circulating MMPs can provide valuable information in patients with kidney diseases. They play an important role in many renal diseases, both acute and chronic. This review attempts to summarize the current knowledge of MMPs in the kidney and discusses recent data from patient and animal studies with reference to specific diseases. A better understanding of the MMPs’ role in renal remodeling may open the way to new interventions favoring deleterious renal changes in a number of kidney diseases.

          Related collections

          Most cited references273

          • Record: found
          • Abstract: found
          • Article: not found

          How matrix metalloproteinases regulate cell behavior.

          The matrix metalloproteinases (MMPs) constitute a multigene family of over 25 secreted and cell surface enzymes that process or degrade numerous pericellular substrates. Their targets include other proteinases, proteinase inhibitors, clotting factors, chemotactic molecules, latent growth factors, growth factor-binding proteins, cell surface receptors, cell-cell adhesion molecules, and virtually all structural extracellular matrix proteins. Thus MMPs are able to regulate many biologic processes and are closely regulated themselves. We review recent advances that help to explain how MMPs work, how they are controlled, and how they influence biologic behavior. These advances shed light on how the structure and function of the MMPs are related and on how their transcription, secretion, activation, inhibition, localization, and clearance are controlled. MMPs participate in numerous normal and abnormal processes, and there are new insights into the key substrates and mechanisms responsible for regulating some of these processes in vivo. Our knowledge in the field of MMP biology is rapidly expanding, yet we still do not fully understand how these enzymes regulate most processes of development, homeostasis, and disease.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Pathophysiology of ischemic acute kidney injury.

            Acute kidney injury (AKI) as a consequence of ischemia is a common clinical event leading to unacceptably high morbidity and mortality, development of chronic kidney disease (CKD), and transition from pre-existing CKD to end-stage renal disease. Data indicate a close interaction between the many cell types involved in the pathophysiology of ischemic AKI, which has critical implications for the treatment of this condition. Inflammation seems to be the common factor that links the various cell types involved in this process. In this Review, we describe the interactions between these cells and their response to injury following ischemia. We relate these events to patients who are at high risk of AKI, and highlight the characteristics that might predispose these patients to injury. We also discuss how therapy targeting specific cell types can minimize the initial and subsequent injury following ischemia, thereby limiting the extent of acute changes and, hopefully, long-term structural and functional alterations to the kidney.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Apoptosis and acute kidney injury.

              Improved mechanistic understanding of renal cell death in acute kidney injury (AKI) has generated new therapeutic targets. Clearly, the classic lesion of acute tubular necrosis is not adequate to describe the consequences of renal ischemia, nephrotoxin exposure, or sepsis on glomerular filtration rate. Experimental evidence supports a pathogenic role for apoptosis in AKI. Interestingly, proximal tubule epithelial cells are highly susceptible to apoptosis, and injury at this site contributes to organ failure. During apoptosis, well-orchestrated events converge at the mitochondrion, the organelle that integrates life and death signals generated by the BCL2 (B-cell lymphoma 2) protein family. Death requires the 'perfect storm' for outer mitochondrial membrane injury to release its cellular 'executioners'. The complexity of this process affords new targets for effective interventions, both before and after renal insults. Inhibiting apoptosis appears to be critical, because circulating factors released by the injured kidney induce apoptosis and inflammation in distant organs including the heart, lung, liver, and brain, potentially contributing to the high morbidity and mortality associated with AKI. Manipulation of known stress kinases upstream of mitochondrial injury, induction of endogenous, anti-apoptotic proteins, and improved understanding of the timing and consequences of renal cell apoptosis will inevitably improve the outcome of human AKI.
                Bookmark

                Author and article information

                Journal
                KBR
                Kidney Blood Press Res
                10.1159/issn.1420-4096
                Kidney and Blood Pressure Research
                S. Karger AG
                1420-4096
                1423-0143
                2019
                June 2019
                11 June 2019
                : 44
                : 3
                : 298-330
                Affiliations
                [_a] aDepartment of Nephrology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czechia
                [_b] bInstitute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czechia
                Author notes
                *Oskar Zakiyanov, MD, PhD, Department of Nephrology, First Faculty of Medicine, Charles University and General University Hospital in Prague, U Nemocnice 2, 128 00 Prague 2 (Czech Republic), E-Mail oskar.zakiyanov@lf1.cuni.cz, oskar.zakiyanov@vfn.cz
                Article
                499876 Kidney Blood Press Res 2019;44:298–330
                10.1159/000499876
                31185475
                d69f0af0-3f77-4db6-9d98-b3de37337df3
                © 2019 The Author(s) Published by S. Karger AG, Basel

                This article is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND). Usage and distribution for commercial purposes as well as any distribution of modified material requires written permission. Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug. Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

                History
                : 14 February 2019
                : 10 March 2019
                Page count
                Figures: 2, Tables: 1, Pages: 33
                Categories
                Review Article

                Cardiovascular Medicine,Nephrology
                Matrix metalloproteinases,Kidney disease,Biomarkers
                Cardiovascular Medicine, Nephrology
                Matrix metalloproteinases, Kidney disease, Biomarkers

                Comments

                Comment on this article