8
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      Call for Papers: Green Renal Replacement Therapy: Caring for the Environment

      Submit here before July 31, 2024

      About Blood Purification: 3.0 Impact Factor I 5.6 CiteScore I 0.83 Scimago Journal & Country Rank (SJR)

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Catechins Blunt the Effects of oxLDL and its Primary Metabolite Phosphatidylcholine Hydroperoxide on Endothelial Dysfunction Through Inhibition of Oxidative Stress and Restoration of eNOS in Rats

      research-article

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background/Aims: We explored the effects of catechins (decaffeinated green tea extracts containing (–)-epicatechin, (–)-epigallocatechin, (–)-epicatechin gallate and (–)-epigallocatechin gallate) on atherosclerosis risk factors, oxidized low-density lipoprotein (oxLDL) and its primary metabolite, phosphatidylcholine hydroperoxide (PCOOH) induced oxidative injury in cultured endothelial cell line and rats. Methods: We used endothelial cell line and male Wistar rats to determine the effect of catechins on oxLDL or PCOOH induced oxidative injury including apoptosis, H<sub>2</sub>O<sub>2</sub> level, vascular responses and urinary 8-isoprostane and nitrite/nitrate concentration. Plasma catechins concentration was determined by a CoulArray HPLC. Responses of aortic and renal vasoconstriction were evaluated by a transonic meter and a full-field laser perfusion imager. Results: PCOOH administration significantly increased H<sub>2</sub>O<sub>2</sub> amounts and cell apoptosis and decreased endothelial nitric oxide synthase (eNOS) expression in the cultured endothelial cells. Catechins pretreatment significantly reduced PCOOH-elevated H<sub>2</sub>O<sub>2</sub> amounts, endothelial cell apoptosis and partly recovered eNOS expression. Intravenous administration of oxLDL, PCOOH or H<sub>2</sub>O<sub>2</sub>, not native LDL, significantly decreased renal and aortic blood flow associated with enhanced ICAM-1 expression and 4-hydroxynoneal (4-HNE) accumulation, and decreased eNOS expression in the male Wistrar rats. One hour after oral intake of green tea extracts, 4 peaks of catechins were found in the rat plasma. The increased plasma catechins significantly inhibited oxLDL-, PCOOH- or H<sub>2</sub>O<sub>2</sub>-induced renal and aortic vasoconstriction, decreased urinary 8-isoprostane levels, renal ICAM-1 expression and 4-HNE accumulation, and restored nitrite/nitrate amounts and eNOS activity. Conclusions: Our data suggests that catechins pretreatment decrease PCOOH-induced endothelial apoptosis and arterial vasoconstriction through the action of H<sub>2</sub>O<sub>2</sub> inhibition and eNOS restoration.

          Related collections

          Most cited references28

          • Record: found
          • Abstract: found
          • Article: not found

          Isoprostanes: markers and mediators of oxidative stress.

          Some years ago it was discovered that prostaglandin F2-like compounds are formed in vivo by nonenzymatic free radical-catalyzed peroxidation of arachidonic acid. Because these compounds are a series of isomers that contain the prostane ring of prostaglandins, they were termed F2-isoprostanes. Intermediates in the isoprostane pathway are prostaglandin H2-like compounds that become reduced to form F2-isoprostanes but also undergo rearrangement in vivo to form E2-, D2-, A2-, J2-isoprostanes, isothromboxanes, and highly reactive gamma-ketoaldehydes, termed isoketals. Analogous compounds have also been shown to be formed from free radical mediated oxidation of docosoahexaenoic acid. Because docosahexaenoic acid is highly enriched in neurons, these compounds have been termed neuroprostanes and neuroketals. An important aspect of the discovery of isoprostanes is that measurement of F2-isoprostanes has emerged as one of the most reliable approaches to assess oxidative stress status in vivo, providing an important tool to explore the role of oxidative stress in the pathogenesis of human disease. Measurement of F4-neuroprostanes has also proved of value in exploring the role of oxidative stress in neurodegenerative diseases. Products of the isoprostane pathway have been found to exert potent biological actions and therefore may participate as physiological mediators of disease.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Antioxidant supplements and mortality.

            Oxidative damage to cells and tissues is considered involved in the aging process and in the development of chronic diseases in humans, including cancer and cardiovascular diseases, the leading causes of death in high-income countries. This has stimulated interest in the preventive potential of antioxidant supplements. Today, more than one half of adults in high-income countries ingest antioxidant supplements hoping to improve their health, oppose unhealthy behaviors, and counteract the ravages of aging. Older observational studies and some randomized clinical trials with high risks of systematic errors ('bias') have suggested that antioxidant supplements may improve health and prolong life. A number of randomized clinical trials with adequate methodologies observed neutral or negative results of antioxidant supplements. Recently completed large randomized clinical trials with low risks of bias and systematic reviews of randomized clinical trials taking systematic errors ('bias') and risks of random errors ('play of chance') into account have shown that antioxidant supplements do not seem to prevent cancer, cardiovascular diseases, or death. Even more, beta-carotene, vitamin A, and vitamin E may increase mortality. Some recent large observational studies now support these findings. According to recent dietary guidelines, there is no evidence to support the use of antioxidant supplements in the primary prevention of chronic diseases or mortality. Antioxidant supplements do not possess preventive effects and may be harmful with unwanted consequences to our health, especially in well-nourished populations. The optimal source of antioxidants seems to come from our diet, not from antioxidant supplements in pills or tablets.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Activating Nrf-2 Signaling Depresses Unilateral Ureteral Obstruction-Evoked Mitochondrial Stress-Related Autophagy, Apoptosis and Pyroptosis in Kidney

              Exacerbated oxidative stress and inflammation may induce three types of programmed cell death, autophagy, apoptosis and pyroptosis in unilateral ureteral obstruction (UUO) kidney. Sulforaphane activating NF-E2-related nuclear factor erythroid-2 (Nrf-2) signaling may ameliorate UUO-induced renal damage. UUO was induced in the left kidney of female Wistar rats. The level of renal blood flow, cortical and medullary oxygen tension and reactive oxygen species (ROS) was evaluated. Fibrosis, ED-1 (macrophage/monocyte) infiltration, oxidative stress, autophagy, apoptosis and pyroptosis were evaluated by immunohistochemistry and Western blot in UUO kidneys. Effects of sulforaphane, an Nrf-2 activator, on Nrf-2- and mitochondrial stress-related proteins and renal injury were examined. UUO decreased renal blood flow and oxygen tension and increased renal ROS, 3-nitrotyrosine stain, ED-1 infiltration and fibrosis. Enhanced renal tubular Beclin-1 expression started at 4 h UUO and further enhanced at 3d UUO, whereas increased Atg-5-Atg12 and LC3-II expression were found at 3d UUO. Increased renal Bax/Bcl-2 ratio, caspase 3 and PARP fragments, apoptosis formation associated with increased caspase 1 and IL-1β expression for pyroptosis formation were started from 3d UUO. UUO reduced nuclear Nrf-2 translocation, increased cytosolic and inhibitory Nrf-2 expression, increased cytosolic Bax translocation to mitochondrial and enhanced mitochondrial Cytochrome c release into cytosol of the UUO kidneys. Sulforaphane significantly increased nuclear Nrf-2 translocation and decreased mitochondrial Bax translocation and Cytochrome c release into cytosol resulting in decreased renal injury. In conclusion, sulforaphane via activating Nrf-2 signaling preserved mitochondrial function and suppressed UUO-induced renal oxidative stress, inflammation, fibrosis, autophagy, apoptosis and pyroptosis.
                Bookmark

                Author and article information

                Journal
                KBR
                Kidney Blood Press Res
                10.1159/issn.1420-4096
                Kidney and Blood Pressure Research
                S. Karger AG
                1420-4096
                1423-0143
                2017
                January 2018
                22 November 2017
                : 42
                : 5
                : 919-932
                Affiliations
                [_a] aDepartment of Life Science, National Taiwan Normal University, Taipei, Taiwan
                [_b] bDepartment of Family Medicine, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
                [_c] cDepartment of Surgery, Mackay Memorial Hospital and Mackay Medical College, Taipei, Taiwan
                [_d] dMackay Junior College of Medicine, Nursing and Management, New Taipei City, Taiwan
                [_e] eDivision of General Surgery, Far-Eastern Memorial Hospital, New Taipei City, Taiwan
                [_f] fDepartment of Electrical Engineering, Yuan Ze University, Taoyuan City, Taiwan
                [_g] gDepartment of Cardiology, Kuang-Tien General Hospital, Taichung, Taiwan
                Author notes
                *Chiang-Ting Chien PhD, Shih-Chung Huang MD, And Kuo-Hsin Chen MD, Department of Life Science, National Taiwan Normal University, No. 88,, Sec. 4, Tingzhou Road, Taipei (Taiwan), Tel. +886-2-77346312, Fax +886-2-29312904, E-Mail ctchien@ntnu.edu.tw
                Article
                485082 Kidney Blood Press Res 2017;42:919–932
                10.1159/000485082
                29161690
                d6a02926-f731-4c46-b0e0-ad88001e7e8d
                © 2017 The Author(s). Published by S. Karger AG, Basel

                This article is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND). Usage and distribution for commercial purposes as well as any distribution of modified material requires written permission. Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug. Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

                History
                : 04 September 2016
                : 06 June 2017
                Page count
                Figures: 6, Pages: 14
                Categories
                Original Paper

                Cardiovascular Medicine,Nephrology
                Vasoconstriction,PCOOH,Catechins,Oxidative stress,Endothelial cells,Nitric oxide

                Comments

                Comment on this article