27
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Mesenchymal Stem Cells Attenuate Radiation-Induced Brain Injury by Inhibiting Microglia Pyroptosis

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Radiation-induced brain injury (RI) commonly occurs in patients who received head and neck radiotherapy. However, the mechanism of RI remains unclear. We aimed to evaluate whether pyroptosis was involved in RI and the impact of mesenchymal stem cells (MSCs) on it. BALB/c male mice (6–8 weeks) were cranially irradiated (15 Gy), and MSCs were transplanted into the bilateral cortex 2 days later; then mice were sacrificed 1 month later. Meanwhile, irradiated BV-2 microglia cells (10 Gy) were cocultured with MSCs for 24 hours. We observed that irradiated mice brains presented NLRP3 and caspase-1 activation. RT-PCR then indicated that it mainly occurred in microglia cells but not in neurons. Further, irradiated BV-2 cells showed pyroptosis and increased production of IL-18 and IL-1 β. RT-PCR also demonstrated an increased expression of several inflammasome genes in irradiated BV-2 cells, including NLRP3 and AIM2. Particularly, NLRP3 was activated. Knockdown of NLRP3 resulted in decreased LDH release. Noteworthily, in vivo, MSCs transplantation alleviated radiation-induced NLRP3 and caspase-1 activation. Moreover, in vitro, MSCs could decrease caspase-1 dependent pyroptosis, NLRP3 inflammasome activation, and ROS production induced by radiation. Thus, our findings proved that microglia pyroptosis occurred in RI. MSCs may act as a potent therapeutic tool in attenuating pyroptosis.

          Related collections

          Most cited references33

          • Record: found
          • Abstract: found
          • Article: not found

          Regulated cell death and inflammation: an auto-amplification loop causes organ failure.

          Regulated cell death (RCD) is either immunologically silent or immunogenic. RCD in parenchymal cells may lead to the release of damage- associated molecular patterns that drive both tissue inflammation and the activation of further pathways of RCD. Following an initial event of regulated necrosis, RCD and inflammation can induce each other and drive a local auto-amplification loop that leads to exaggerated cell death and inflammation. In this Opinion article, we propose that such crosstalk between pro-inflammatory and RCD pathways has pathophysiological relevance in solid organ failure, transplantation and cancer. In our opinion, clinicians should not only prescribe immunosuppressive treatments to disrupt this circuit, but also implement the neglected therapeutic option of adding compounds that interfere with RCD.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The PYRIN-CARD protein ASC is an activating adaptor for caspase-1.

            The PYRIN and CARD domains are members of the six-helix bundle death domain-fold superfamily that mediates assembly of large signaling complexes in the apoptotic and inflammatory signaling pathways. Here we show that the PYRIN-CARD protein ASC functions as a caspase-1-activating adaptor. ASC interacted specifically with procaspase-1 via CARD-CARD interactions and induced its oligomerization. Consistent with these results ectopic expression of full-length ASC, but not its isolated CARD or PYRIN domain, with procaspase-1 induced activation of procaspase-1 and processing of pro-interleukin-1beta in transfected cells. Substitution of the PYRIN domain of ASC with an inducible FKBP12 oligomerization domain produced a molecule that can induce caspase-1 activation in response to stimulation with the oligomerization drug AP20187, suggesting that the PYRIN domain functions as an oligomerization domain, whereas the CARD domain functions as the effector domain in the caspase-1 activation pathway. Furthermore stable expression of an isolated CARD of ASC in THP-1 cells diminished interleukin-1beta generation in response to pro-inflammatory cytokines. These results indicate that ASC is involved in the caspase-1 signaling pathway by mediating the assembly of a caspase-1-inflammasome signaling complex in response to pro-inflammatory cytokine stimulation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              ROS homeostasis and metabolism: a critical liaison for cancer therapy

              Evidence indicates that hypoxia and oxidative stress can control metabolic reprogramming of cancer cells and other cells in tumor microenvironments and that the reprogrammed metabolic pathways in cancer tissue can also alter the redox balance. Thus, important steps toward developing novel cancer therapy approaches would be to identify and modulate critical biochemical nodes that are deregulated in cancer metabolism and determine if the therapeutic efficiency can be influenced by changes in redox homeostasis in cancer tissues. In this review, we will explore the molecular mechanisms responsible for the metabolic reprogramming of tumor microenvironments, the functional modulation of which may disrupt the effects of or may be disrupted by redox homeostasis modulating cancer therapy.
                Bookmark

                Author and article information

                Contributors
                Journal
                Biomed Res Int
                Biomed Res Int
                BMRI
                BioMed Research International
                Hindawi
                2314-6133
                2314-6141
                2017
                7 December 2017
                : 2017
                : 1948985
                Affiliations
                1Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
                2Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
                3Faculty of Health Sciences, University of Macau, Taipa, Macau
                Author notes

                Academic Editor: Nobuo Kanazawa

                Author information
                http://orcid.org/0000-0003-0112-2934
                Article
                10.1155/2017/1948985
                6020670
                30009163
                d6a095d0-f524-4404-a95d-a17e8e2c96ec
                Copyright © 2017 Huan Liao et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 19 July 2017
                : 8 November 2017
                Funding
                Funded by: Key Project of Product, Study and Research of Guangzhou City
                Award ID: 201508020058
                Funded by: National Natural Science Foundation of China
                Award ID: 81572481
                Award ID: 81502167
                Award ID: 81601042
                Funded by: International Collaboration Program of Universities in Guangdong Province
                Award ID: 2012gjhz001
                Categories
                Research Article

                Comments

                Comment on this article