+1 Recommend
1 collections
      • Record: found
      • Abstract: found
      • Article: found

      Granulocyte Macrophage Colony-Stimulating Factor Deficiency Affects Vascular Elastin Production and Integrity of Elastic Lamellae

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.


          Background: Granulocyte macrophage colony-stimulating factor (GM-CSF) deficiency affects the production and fiber assembly/organization of the vascular collagenous matrix; structural alterations to the elastic system were observed. The present study elaborates the effect of GM-CSF deficiency on the vascular elastin system. Methods and Results: Histological examination of the aorta of GM-CSF-deficient mice revealed structurally altered elastic fibers. The elastic fiber area was significantly enhanced, whereas the remaining medial area was not affected. Aortic size was significantly increased. Reverse transcription polymerase chain reaction demonstrated decreased expression levels of tropoelastin, lysyl oxidase and bone morphogenetic protein 1 (BMP-1). Cell culture studies on vascular smooth muscle cells showed that after clearance of GM-CSF with GM-CSF antibodies, the tropoelastin mRNA expression was markedly reduced. Concomitantly, lysyl oxidase and BMP-1 mRNA levels were decreased. Treatment with GM-CSF stimulated the expression of these mRNAs. Conclusions: Our studies demonstrate that disorganization of elastic lamellae as induced by GM-CSF deficiency is associated with adaptive vascular remodeling. The decreased tropoelastin expression observed is associated with elastic fiber hypertrophy. This paradox effect may be explained by decreased expression levels of lysyl oxidase and BMP-1, both mediating cross-linkage and thus assembly and organization of elastic fibers. From our data, we conclude that GM-CSF is a prerequisite for the maintenance of structural integrity of the vessel wall.

          Related collections

          Most cited references 15

          • Record: found
          • Abstract: found
          • Article: not found

          Collagen cross-links in mineralizing tissues: a review of their chemistry, function, and clinical relevance.

           L Knott,  A.J. Bailey (1998)
          Bone collagen cross-links are now widely used to assess bone resorption levels in many metabolic bone diseases. The post-translational modifications of bone and other mineralizing collagens are significantly different from those of other type I collagen matrices, a fact that has been exploited during recent advances in the development of biochemical markers of bone resorption. The enzymatic collagen cross-linking mechanism is based upon aldehyde formation from specific telopeptide lysine or hydroxylysine residues. The immature ketoimine cross-links in bone form via the condensation of a telopeptide aldehyde with a helical lysine or hydroxylysine. Subsequent maturation to the pyridinoline and pyrrole cross-links occur by further reaction of the ketoimines with telopeptide aldehydes. In mineralizing tissues, a relatively low level of lysyl hydroxylation results in low levels of hydroxylysyl pyridinoline, and the occurrence of the largely bone specific lysyl pyridinoline and pyrrolic cross-links. The collagen post-translational modifications appear to play an integral role in matrix mineralization. The matrix of the turkey tendon only mineralizes after a remodeling of the collagen and the subsequent formation of a modified matrix more typical of bone than tendon. Further, disturbances in the post-translational modification of collagen can also affect the mineralization density and crystal structure of the tissue. In addition to their use as a convenient measure of matrix degradation, collagen cross-links are of significant importance for the biomechanical integrity of bone. Recent studies of osteoporotic bone, for example, have demonstrated that subtle perturbations in the pattern of lysine hydroxylation result in changes in the cross-link profile. These alterations, specifically changes in the level of the pyrrolic cross-link, also correlate with the strength of the bone. Further research into the biochemistry of bone collagen cross-links may expand current understanding and their clinical application in metabolic bone disease. This review also demonstrates the potential for further study into this area to provide more subtle information into the mechanisms and etiology of disease and aging of mineralizing tissues.
            • Record: found
            • Abstract: found
            • Article: not found

            The molecular control of cell division, differentiation commitment and maturation in haemopoietic cells.

            Several glycoproteins that control blood-cell production and function have been purified and sequenced. The four colony-stimulating factors interact in a complex way to regulate the differentiation and maturation of the granulocyte and macrophage lineages and have potential applications for the clinical manipulation of blood-cell production.
              • Record: found
              • Abstract: found
              • Article: not found

              Elastin point mutations cause an obstructive vascular disease, supravalvular aortic stenosis.

              Supravalvular aortic stenosis (SVAS) is an inherited obstructive vascular disease that affects the aorta, carotid, coronary and pulmonary arteries. Previous molecular genetic data have led to the hypothesis that SVAS results from mutations in the elastin gene, ELN. In these studies, the disease phenotype was linked to gross DNA rearrangements (35 and 85 kb deletions and a translocation) in three SVAS families. However, gross rearrangements of ELN have not been identified in most cases of autosomal dominant SVAS. To define the spectrum of ELN mutations responsible for this disorder, we refined the genomic structure of human ELN and used this information in mutational analyses. ELN point mutations co-segregate with the disease in four familial cases and are associated with SVAS in three sporadic cases. Two of the mutations are nonsense, one is a single base pair deletion and four are splice site mutations. In one sporadic case, the mutation arose de novo. These data demonstrate that point mutations of ELN cause autosomal dominant SVAS.

                Author and article information

                J Vasc Res
                Journal of Vascular Research
                S. Karger AG
                February 2008
                12 October 2007
                : 45
                : 2
                : 103-110
                aLeibniz Institute for Arteriosclerosis Research, and Departments of bThoracic and Cardiovascular Surgery, cCardiology and Angiology, and dDermatology, Hospital of the University of Münster, Münster, Germany
                109819 J Vasc Res 2008;45:103–110
                © 2007 S. Karger AG, Basel

                Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher. Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug. Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

                Page count
                Figures: 5, Tables: 1, References: 28, Pages: 8
                Research Paper


                Comment on this article