44
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      Neuropsychiatric Disease and Treatment (submit here)

      This international, peer-reviewed Open Access journal by Dove Medical Press focuses on all aspects of neuropsychiatric and neurological disorders. Sign up for email alerts here.

      63,741 Monthly downloads/views I 2.989 Impact Factor I 4.5 CiteScore I 1.09 Source Normalized Impact per Paper (SNIP) I 0.744 Scimago Journal & Country Rank (SJR)

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Affective network and default mode network in depressive adolescents with disruptive behaviors

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Aim

          Disruptive behaviors are thought to affect the progress of major depressive disorder (MDD) in adolescents. In resting-state functional connectivity (RSFC) studies of MDD, the affective network (limbic network) and the default mode network (DMN) have garnered a great deal of interest. We aimed to investigate RSFC in a sample of treatment-naïve adolescents with MDD and disruptive behaviors.

          Methods

          Twenty-two adolescents with MDD and disruptive behaviors ( disrup-MDD) and 20 age- and sex-matched healthy control (HC) participants underwent resting-state functional magnetic resonance imaging (fMRI). We used a seed-based correlation approach concerning two brain circuits including the affective network and the DMN, with two seed regions including the bilateral amygdala for the limbic network and the bilateral posterior cingulate cortex (PCC) for the DMN. We also observed a correlation between RSFC and severity of depressive symptoms and disruptive behaviors.

          Results

          The disrup-MDD participants showed lower RSFC from the amygdala to the orbitofrontal cortex and parahippocampal gyrus compared to HC participants. Depression scores in disrup-MDD participants were negatively correlated with RSFC from the amygdala to the right orbitofrontal cortex. The disrup-MDD participants had higher PCC RSFC compared to HC participants in a cluster that included the left precentral gyrus, left insula, and left parietal lobe. Disruptive behavior scores in disrup-MDD patients were positively correlated with RSFC from the PCC to the left insular cortex.

          Conclusion

          Depressive mood might be correlated with the affective network, and disruptive behavior might be correlated with the DMN in adolescent depression.

          Most cited references29

          • Record: found
          • Abstract: found
          • Article: not found

          Amygdala and ventromedial prefrontal cortex are inversely coupled during regulation of negative affect and predict the diurnal pattern of cortisol secretion among older adults.

          Among younger adults, the ability to willfully regulate negative affect, enabling effective responses to stressful experiences, engages regions of prefrontal cortex (PFC) and the amygdala. Because regions of PFC and the amygdala are known to influence the hypothalamic-pituitary-adrenal axis, here we test whether PFC and amygdala responses during emotion regulation predict the diurnal pattern of salivary cortisol secretion. We also test whether PFC and amygdala regions are engaged during emotion regulation in older (62- to 64-year-old) rather than younger individuals. We measured brain activity using functional magnetic resonance imaging as participants regulated (increased or decreased) their affective responses or attended to negative picture stimuli. We also collected saliva samples for 1 week at home for cortisol assay. Consistent with previous work in younger samples, increasing negative affect resulted in ventral lateral, dorsolateral, and dorsomedial regions of PFC and amygdala activation. In contrast to previous work, decreasing negative affect did not produce the predicted robust pattern of higher PFC and lower amygdala activation. Individuals demonstrating the predicted effect (decrease < attend in the amygdala), however, exhibited higher signal in ventromedial prefrontal cortex (VMPFC) for the same contrast. Furthermore, participants displaying higher VMPFC and lower amygdala signal when decreasing compared with the attention control condition evidenced steeper, more normative declines in cortisol over the course of the day. Individual differences yielded the predicted link between brain function while reducing negative affect in the laboratory and diurnal regulation of endocrine activity in the home environment.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Failure to regulate: counterproductive recruitment of top-down prefrontal-subcortical circuitry in major depression.

            Although depressed mood is a normal occurrence in response to adversity in all individuals, what distinguishes those who are vulnerable to major depressive disorder (MDD) is their inability to effectively regulate negative mood when it arises. Investigating the neural underpinnings of adaptive emotion regulation and the extent to which such processes are compromised in MDD may be helpful in understanding the pathophysiology of depression. We report results from a functional magnetic resonance imaging study demonstrating left-lateralized activation in the prefrontal cortex (PFC) when downregulating negative affect in nondepressed individuals, whereas depressed individuals showed bilateral PFC activation. Furthermore, during an effortful affective reappraisal task, nondepressed individuals showed an inverse relationship between activation in left ventrolateral PFC and the amygdala that is mediated by the ventromedial PFC (VMPFC). No such relationship was found for depressed individuals, who instead show a positive association between VMPFC and amygdala. Pupil dilation data suggest that those depressed patients who expend more effort to reappraise negative stimuli are characterized by accentuated activation in the amygdala, insula, and thalamus, whereas nondepressed individuals exhibit the opposite pattern. These findings indicate that a key feature underlying the pathophysiology of major depression is the counterproductive engagement of right prefrontal cortex and the lack of engagement of left lateral-ventromedial prefrontal circuitry important for the downregulation of amygdala responses to negative stimuli.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Functional connectivity of the human amygdala using resting state fMRI.

              The amygdala is composed of structurally and functionally distinct nuclei that contribute to the processing of emotion through interactions with other subcortical and cortical structures. While these circuits have been studied extensively in animals, human neuroimaging investigations of amygdala-based networks have typically considered the amygdala as a single structure, which likely masks contributions of individual amygdala subdivisions. The present study uses resting state functional magnetic resonance imaging (fMRI) to test whether distinct functional connectivity patterns, like those observed in animal studies, can be detected across three amygdala subdivisions: laterobasal, centromedial, and superficial. In a sample of 65 healthy adults, voxelwise regression analyses demonstrated positively-predicted ventral and negatively-predicted dorsal networks associated with the total amygdala, consistent with previous animal and human studies. Investigation of individual amygdala subdivisions revealed distinct differences in connectivity patterns within the amygdala and throughout the brain. Spontaneous activity in the laterobasal subdivision predicted activity in temporal and frontal regions, while activity in the centromedial nuclei predicted activity primarily in striatum. Activity in the superficial subdivision positively predicted activity throughout the limbic lobe. These findings suggest that resting state fMRI can be used to investigate human amygdala networks at a greater level of detail than previously appreciated, allowing for the further advancement of translational models.
                Bookmark

                Author and article information

                Journal
                Neuropsychiatr Dis Treat
                Neuropsychiatr Dis Treat
                Neuropsychiatric Disease and Treatment
                Neuropsychiatric Disease and Treatment
                Dove Medical Press
                1176-6328
                1178-2021
                2016
                31 December 2015
                : 12
                : 49-56
                Affiliations
                [1 ]Department of Psychiatry, School of Medicine, Chung-Ang University, Seoul, South Korea
                [2 ]Department of Biomedical Engineering, Gachon University of Medicine and Science, Incheon, South Korea
                [3 ]Department of Psychiatry, School of Medicine, Kyungpook National University, Daegu, South Korea
                [4 ]School Mental Health Resources and Research Center, Kyungpook National University Children’s Hospital, Daegu, South Korea
                Author notes
                Correspondence: Doug Hyun Han, Department of Psychiatry, School of Medicine, Chung-Ang University, Heukseok-ro 102, Dongjack-gu, Seoul 156-755, South Korea, Tel +82 2 6299 3132, Email hduk@ 123456yahoo.com
                Article
                ndt-12-049
                10.2147/NDT.S95541
                4706123
                26770059
                d6b0edb8-eb79-4163-9081-580e6039bc9d
                © 2016 Kim et al. This work is published and licensed by Dove Medical Press Limited.

                The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License ( http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed.

                History
                Categories
                Original Research

                Neurology
                resting-state functional connectivity,major depressive disorder,disruptive behaviors,limbic network,default mode network

                Comments

                Comment on this article