40
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Babela massiliensis, a representative of a widespread bacterial phylum with unusual adaptations to parasitism in amoebae

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Only a small fraction of bacteria and archaea that are identifiable by metagenomics can be grown on standard media. Recent efforts on deep metagenomics sequencing, single-cell genomics and the use of specialized culture conditions (culturomics) increasingly yield novel microbes some of which represent previously uncharacterized phyla and possess unusual biological traits.

          Results

          We report isolation and genome analysis of Babela massiliensis, an obligate intracellular parasite of Acanthamoeba castellanii. B. massiliensis shows an unusual, fission mode of cell multiplication whereby large, polymorphic bodies accumulate in the cytoplasm of infected amoeba and then split into mature bacterial cells. This unique mechanism of cell division is associated with a deep degradation of the cell division machinery and delayed expression of the ftsZ gene. The genome of B. massiliensis consists of a circular chromosome approximately 1.12 megabase in size that encodes, 981 predicted proteins, 38 tRNAs and one typical rRNA operon. Phylogenetic analysis shows that B. massiliensis belongs to the putative bacterial phylum TM6 that so far was represented by the draft genome of the JCVI TM6SC1 bacterium obtained by single cell genomics and numerous environmental sequences.

          Conclusions

          Currently, B. massiliensis is the only cultivated member of the putative TM6 phylum. Phylogenomic analysis shows diverse taxonomic affinities for B. massiliensis genes, suggestive of multiple gene acquisitions via horizontal transfer from other bacteria and eukaryotes. Horizontal gene transfer is likely to be facilitated by the cohabitation of diverse parasites and symbionts inside amoeba. B. massiliensis encompasses many genes encoding proteins implicated in parasite-host interaction including the greatest number of ankyrin repeats among sequenced bacteria and diverse proteins related to the ubiquitin system. Characterization of B. massiliensis, a representative of a distinct bacterial phylum, thanks to its ability to grow in amoeba, reaffirms the critical role of diverse culture approaches in microbiology.

          Reviewers

          This article was reviewed by Dr. Igor Zhulin, Dr. Jeremy Selengut, and Pr Martijn Huynen.

          Electronic supplementary material

          The online version of this article (doi:10.1186/s13062-015-0043-z) contains supplementary material, which is available to authorized users.

          Related collections

          Most cited references52

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Toward almost closed genomes with GapFiller

          De novo assembly is a commonly used application of next-generation sequencing experiments. The ultimate goal is to puzzle millions of reads into one complete genome, although draft assemblies usually result in a number of gapped scaffold sequences. In this paper we propose an automated strategy, called GapFiller, to reliably close gaps within scaffolds using paired reads. The method shows good results on both bacterial and eukaryotic datasets, allowing only few errors. As a consequence, the amount of additional wetlab work needed to close a genome is drastically reduced. The software is available at http://www.baseclear.com/bioinformatics-tools/.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Extreme genome reduction in symbiotic bacteria.

            Since 2006, numerous cases of bacterial symbionts with extraordinarily small genomes have been reported. These organisms represent independent lineages from diverse bacterial groups. They have diminutive gene sets that rival some mitochondria and chloroplasts in terms of gene numbers and lack genes that are considered to be essential in other bacteria. These symbionts have numerous features in common, such as extraordinarily fast protein evolution and a high abundance of chaperones. Together, these features point to highly degenerate genomes that retain only the most essential functions, often including a considerable fraction of genes that serve the hosts. These discoveries have implications for the concept of minimal genomes, the origins of cellular organelles, and studies of symbiosis and host-associated microbiota.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Genomics of bacteria and archaea: the emerging dynamic view of the prokaryotic world

              The first bacterial genome was sequenced in 1995, and the first archaeal genome in 1996. Soon after these breakthroughs, an exponential rate of genome sequencing was established, with a doubling time of approximately 20 months for bacteria and approximately 34 months for archaea. Comparative analysis of the hundreds of sequenced bacterial and dozens of archaeal genomes leads to several generalizations on the principles of genome organization and evolution. A crucial finding that enables functional characterization of the sequenced genomes and evolutionary reconstruction is that the majority of archaeal and bacterial genes have conserved orthologs in other, often, distant organisms. However, comparative genomics also shows that horizontal gene transfer (HGT) is a dominant force of prokaryotic evolution, along with the loss of genetic material resulting in genome contraction. A crucial component of the prokaryotic world is the mobilome, the enormous collection of viruses, plasmids and other selfish elements, which are in constant exchange with more stable chromosomes and serve as HGT vehicles. Thus, the prokaryotic genome space is a tightly connected, although compartmentalized, network, a novel notion that undermines the ‘Tree of Life’ model of evolution and requires a new conceptual framework and tools for the study of prokaryotic evolution.
                Bookmark

                Author and article information

                Contributors
                isabelle.pagnier@univ-amu.fr
                yutin@ncbi.nlm.nih.gov
                olivier.croce@gmail.com
                makarova@ncbi.nlm.nih.gov
                wolf@ncbi.nlm.nih.gov
                benamarsamia@yahoo.fr
                didier.raoult@gmail.com
                koonin@ncbi.nlm.nih.gov
                bernard.la-scola@univ-amu.fr
                Journal
                Biol Direct
                Biol. Direct
                Biology Direct
                BioMed Central (London )
                1745-6150
                31 March 2015
                31 March 2015
                2015
                : 10
                : 13
                Affiliations
                [ ]URMITE, CNRS UMR IRD 6236, Faculté de Médecine, Université de la Méditerranée, 27 Bd. Jean Moulin, 13385 Marseille Cedex 5, France
                [ ]National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894 USA
                Article
                43
                10.1186/s13062-015-0043-z
                4378268
                25884386
                d6b53d16-d8e4-4da0-851e-d113d7919c91
                © Pagnier et al.; licensee BioMed Central. 2015

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 17 November 2014
                : 12 February 2015
                Categories
                Research
                Custom metadata
                © The Author(s) 2015

                Life sciences
                intracellular bacteria,amoeba,bacterial replication
                Life sciences
                intracellular bacteria, amoeba, bacterial replication

                Comments

                Comment on this article