93
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Progress in Exosome Isolation Techniques

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Exosomes are one type of membrane vesicles secreted into extracellular space by most types of cells. In addition to performing many biological functions particularly in cell-cell communication, cumulative evidence has suggested that several biological entities in exosomes like proteins and microRNAs are closely associated with the pathogenesis of most human malignancies and they may serve as invaluable biomarkers for disease diagnosis, prognosis, and therapy. This provides a commanding impetus and growing demands for simple, efficient, and affordable techniques to isolate exosomes. Capitalizing on the physicochemical and biochemical properties of exosomes, a number of techniques have been developed for the isolation of exosomes. This article summarizes the advances in exosome isolation techniques with an emphasis on their isolation mechanism, performance, challenges, and prospects. We hope that this article will provide an overview of exosome isolation techniques, opening up new perspectives towards the development more innovative strategies and devices for more time saving, cost effective, and efficient isolations of exosomes from a wide range of biological matrices.

          Related collections

          Most cited references57

          • Record: found
          • Abstract: found
          • Article: not found

          Comparison of ultracentrifugation, density gradient separation, and immunoaffinity capture methods for isolating human colon cancer cell line LIM1863-derived exosomes.

          Exosomes are 40-100nm extracellular vesicles that are released from a multitude of cell types, and perform diverse cellular functions including intercellular communication, antigen presentation, and transfer of oncogenic proteins as well as mRNA and miRNA. Exosomes have been purified from biological fluids and in vitro cell cultures using a variety of strategies and techniques. However, all preparations invariably contain varying proportions of other membranous vesicles that co-purify with exosomes such as shed microvesicles and apoptotic blebs. Using the colorectal cancer cell line LIM1863 as a cell model, in this study we performed a comprehensive evaluation of current methods used for exosome isolation including ultracentrifugation (UC-Exos), OptiPrep™ density-based separation (DG-Exos), and immunoaffinity capture using anti-EpCAM coated magnetic beads (IAC-Exos). Notably, all isolations contained 40-100nm vesicles, and were positive for exosome markers (Alix, TSG101, HSP70) based on electron microscopy and Western blotting. We employed a proteomic approach to profile the protein composition of exosomes, and label-free spectral counting to evaluate the effectiveness of each method. Based on the number of MS/MS spectra identified for exosome markers and proteins associated with their biogenesis, trafficking, and release, we found IAC-Exos to be the most effective method to isolate exosomes. For example, Alix, TSG101, CD9 and CD81 were significantly higher (at least 2-fold) in IAC-Exos, compared to UG-Exos and DG-Exos. Application of immunoaffinity capture has enabled the identification of proteins including the ESCRT-III component VPS32C/CHMP4C, and the SNARE synaptobrevin 2 (VAMP2) in exosomes for the first time. Additionally, several cancer-related proteins were identified in IAC-Exos including various ephrins (EFNB1, EFNB2) and Eph receptors (EPHA2-8, EPHB1-4), and components involved in Wnt (CTNNB1, TNIK) and Ras (CRK, GRB2) signalling. Copyright © 2012 Elsevier Inc. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Exosomal microRNA: a diagnostic marker for lung cancer.

            To date, there is no screening test for lung cancer shown to affect overall mortality. MicroRNAs (miRNAs) are a class of small noncoding RNA genes found to be abnormally expressed in several types of cancer, suggesting a role in the pathogenesis of human cancer. We evaluated the circulating levels of tumor exosomes, exosomal small RNA, and specific exosomal miRNAs in patients with and without lung adenocarcinoma, correlating the levels with the American Joint Committee on Cancer (AJCC) disease stage to validate it as an acceptable marker for diagnosis and prognosis in patients with adenocarcinoma of the lung. To date, 27 patients with lung adenocarcinoma AJCC stages I-IV and 9 controls, all aged 21-80 years, were enrolled in the study. Small RNA was detected in the circulating exosomes. The mean exosome concentration was 2.85 mg/mL (95% CI, 1.94-3.76) for the lung adenocarcinoma group versus 0.77 mg/mL (95% CI, 0.68-0.86) for the control group (P < .001). The mean miRNA concentration was 158.6 ng/mL (95% CI, 145.7-171.5) for the lung adenocarcinoma group versus 68.1 ng/mL (95% CI, 57.2-78.9) for the control group (P < .001). Comparisons between peripheral circulation miRNA-derived exosomes and miRNA-derived tumors indicated that the miRNA signatures were not significantly different. The significant difference in total exosome and miRNA levels between lung cancer patients and controls, and the similarity between the circulating exosomal miRNA and the tumor-derived miRNA patterns, suggest that circulating exosomal miRNA might be useful as a screening test for lung adenocarcinoma. No correlation between the exosomal miRNA levels and the stage of disease can be made at this point.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Electron microscopic evidence for externalization of the transferrin receptor in vesicular form in sheep reticulocytes

              Using ferritin-labeled protein A and colloidal gold-labeled anti-rabbit IgG, the fate of the sheep transferrin receptor has been followed microscopically during reticulocyte maturation in vitro. After a few minutes of incubation at 37 degrees C, the receptor is found on the cell surface or in simple vesicles of 100-200 nm, in which the receptor appears to line the limiting membrane of the vesicles. With time (60 min or longer), large multivesicular elements (MVEs) appear whose diameter may reach 1-1.5 micron. Inside these large MVEs are round bodies of approximately 50-nm diam that bear the receptor at their external surfaces. The limiting membrane of the large MVEs is relatively free from receptor. When the large MVEs fuse with the plasma membrane, their contents, the 50-nm bodies, are released into the medium. The 50-nm bodies appear to arise by budding from the limiting membrane of the intracellular vesicles. Removal of surface receptor with pronase does not prevent exocytosis of internalized receptor. It is proposed that the exocytosis of the approximately 50-nm bodies represents the mechanism by which the transferrin receptor is shed during reticulocyte maturation.
                Bookmark

                Author and article information

                Journal
                Theranostics
                Theranostics
                thno
                Theranostics
                Ivyspring International Publisher (Sydney )
                1838-7640
                2017
                26 January 2017
                : 7
                : 3
                : 789-804
                Affiliations
                [1 ]Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 639798.
                [2 ]Department of Chemistry, National University of Singapore, Singapore 117543.
                [3 ]Department of Pharmacy, National University of Singapore, Singapore 117543.
                Author notes
                ✉ Corresponding authors: Tel: 6592-3991, 6516-3887, Fax: 6779-1691, e-mail: lipin@ 123456ntu.edu.sg , chmgaoz@ 123456nus.edu.sg .

                Competing Interests: The authors have declared that no competing interest exists.

                Article
                thnov07p0789
                10.7150/thno.18133
                5327650
                28255367
                d6b80304-9d35-4332-b209-f049bc89d3ab
                © Ivyspring International Publisher

                This is an open access article distributed under the terms of the Creative Commons Attribution (CC BY-NC) license ( https://creativecommons.org/licenses/by-nc/4.0/). See http://ivyspring.com/terms for full terms and conditions.

                History
                : 29 October 2016
                : 20 November 2016
                Categories
                Review

                Molecular medicine
                exosome,isolation
                Molecular medicine
                exosome, isolation

                Comments

                Comment on this article