26
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Role of Lipid Membranes in Life’s Origin

      review-article
      Life
      MDPI
      membranes, protocells, encapsulation

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          At some point in early evolution, life became cellular. Assuming that this step was required for the origin of life, there would necessarily be a pre-existing source of amphihilic compounds capable of assembling into membranous compartments. It is possible to make informed guesses about the properties of such compounds and the conditions most conducive to their self-assembly into boundary structures. The membranes were likely to incorporate mixtures of hydrocarbon derivatives between 10 and 20 carbons in length with carboxylate or hydroxyl head groups. Such compounds can be synthesized by chemical reactions and small amounts were almost certainly present in the prebiotic environment. Membrane assembly occurs most readily in low ionic strength solutions with minimal content of salt and divalent cations, which suggests that cellular life began in fresh water pools associated with volcanic islands rather than submarine hydrothermal vents.

          Related collections

          Most cited references75

          • Record: found
          • Abstract: found
          • Article: not found

          Endogenous production, exogenous delivery and impact-shock synthesis of organic molecules: an inventory for the origins of life.

          Sources of organic molecules on the early Earth divide into three categories: delivery by extraterrestrial objects; organic synthesis driven by impact shocks; and organic synthesis by other energy sources (such as ultraviolet light or electrical discharges). Estimates of these sources for plausible end-member oxidation states of the early terrestrial atmosphere suggest that the heavy bombardment before 3.5 Gyr ago either produced or delivered quantities of organics comparable to those produced by other energy sources. Which sources of prebiotic organics were quantitatively dominant depends strongly on the composition of the early terrestrial atmosphere. In the event of an early strongly reducing atmosphere, production by atmospheric shocks seems to have dominated that due to electrical discharges. Organic synthesis by ultraviolet light may, in turn, have dominated shock production, but only if a long-wavelength absorber such as H2S were supplied to the atmosphere at a rate sufficient for synthesis to have been limited by ultraviolet flux, rather than by reactant abundance. In the apparently more likely case of an early terrestrial atmosphere of intermediate oxidation state, atmospheric shocks were probably of little importance for direct organic production. For [H2]/[CO2] ratios of approximately 0.1, net organic production was some three orders of magnitude lower than for reducing atmospheres, with delivery of intact exogenous organics in interplanetary dust particles (IDPs) and ultraviolet production being the most important sources. At still lower [H2]/[CO2] ratios, IDPs may have been the dominant source of prebiotic organics on the early Earth. Endogenous, exogenous and impact-shock sources of organics could each have made a significant contribution to the origins of life.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A vesicle bioreactor as a step toward an artificial cell assembly.

            An Escherichia coli cell-free expression system is encapsulated in a phospholipid vesicle to build a cell-like bioreactor. Large unilamellar vesicles containing extracts are produced in an oil-extract emulsion. To form a bilayer the vesicles are transferred into a feeding solution that contains ribonucleotides and amino acids. Transcription-translation of plasmid genes is isolated in the vesicles. Whereas in bulk solution expression of enhanced GFP stops after 2 h, inside the vesicle permeability of the membrane to the feeding solution prolongs the expression for up to 5 h. To solve the energy and material limitations and increase the capacity of the reactor, the alpha-hemolysin pore protein from Staphylococcus aureus is expressed inside the vesicle to create a selective permeability for nutrients. The reactor can then sustain expression for up to 4 days with a protein production of 30 muM after 4 days. Oxygen diffusion and osmotic pressure are critical parameters to maintain expression and avoid vesicle burst.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Experimental models of primitive cellular compartments: encapsulation, growth, and division.

              The clay montmorillonite is known to catalyze the polymerization of RNA from activated ribonucleotides. Here we report that montmorillonite accelerates the spontaneous conversion of fatty acid micelles into vesicles. Clay particles often become encapsulated in these vesicles, thus providing a pathway for the prebiotic encapsulation of catalytically active surfaces within membrane vesicles. In addition, RNA adsorbed to clay can be encapsulated within vesicles. Once formed, such vesicles can grow by incorporating fatty acid supplied as micelles and can divide without dilution of their contents by extrusion through small pores. These processes mediate vesicle replication through cycles of growth and division. The formation, growth, and division of the earliest cells may have occurred in response to similar interactions with mineral particles and inputs of material and energy.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                Life (Basel)
                Life (Basel)
                life
                Life
                MDPI
                2075-1729
                17 January 2017
                March 2017
                : 7
                : 1
                : 5
                Affiliations
                Department of Biomolecular Engineering, University of California, Santa Cruz, CA 95060, USA; deamer@ 123456soe.ucsc.edu ; Tel.: +1-831-4595158
                Article
                life-07-00005
                10.3390/life7010005
                5370405
                28106741
                d6ca2658-924a-452a-bbbf-f88f674d3a46
                © 2017 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 13 December 2016
                : 09 January 2017
                Categories
                Review

                membranes,protocells,encapsulation
                membranes, protocells, encapsulation

                Comments

                Comment on this article