28
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Effects of the COVID-19 Pandemic on Indoor Air Quality and Thermal Comfort of Primary Schools in Winter in a Mediterranean Climate

      , , ,
      Sustainability
      MDPI AG

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Research studies have shown the potential effects of indoor environmental quality (IEQ) on pupils’ health and academic performance. The COVID-19 pandemic has prompted renewed interest in the assessment of deficient indoor air quality (IAQ) conditions in schools and has become a priority over achieving adequate comfort conditions. Scientific studies confirm aerosols as one of the transmission routes of SARS-CoV-2 so that the possibility of airborne transmission increases in indoor environments with high occupancy, such as classrooms. As a result, international protocols and guidelines have established a requirement for educational buildings to over-ventilate with a fresh outdoor air supply. The main object of this work is to analyse the effects of the COVID-19 pandemic on thermal comfort and indoor air quality, in winter, in two classrooms of southern Spain. Thus, onsite measurements of environmental variables were conducted before and during the pandemic. Both classrooms have mechanical ventilation systems as they are within a recently built primary school (2018). Results shows a decrease of 300 ppm in CO2 weekly average values during the pandemic, when hybrid ventilation is used, and a decrease of 400 ppm when schools are naturally ventilated during all teaching hours. However, the analysis of standards shows that over 60% of hours are thermal discomfort conditions.

          Related collections

          Most cited references34

          • Record: found
          • Abstract: not found
          • Article: not found

          World Map of the Köppen-Geiger climate classification updated

            • Record: found
            • Abstract: found
            • Article: not found

            Airborne transmission of SARS-CoV-2: the world should face the reality

            Hand washing and maintaining social distance are the main measures recommended by the World Health Organization (WHO) to avoid contracting COVID-19. Unfortunately, these measured do not prevent infection by inhalation of small droplets exhaled by an infected person that can travel distance of meters or tens of meters in the air and carry their viral content. Science explains the mechanisms of such transport and there is evidence that this is a significant route of infection in indoor environments. Despite this, no countries or authorities consider airborne spread of COVID-19 in their regulations to prevent infections transmission indoors. It is therefore extremely important, that the national authorities acknowledge the reality that the virus spreads through air, and recommend that adequate control measures be implemented to prevent further spread of the SARS-CoV-2 virus, in particularly removal of the virus-laden droplets from indoor air by ventilation.
              • Record: found
              • Abstract: found
              • Article: not found

              Estimation of airborne viral emission: quanta emission rate of SARS-CoV-2 for infection risk assessment

              Highlights • Airborne transmission is a pathway of contagion of an epidemic. • Simulating the virus airborne transmission requires viral emission data. • A novel approach estimating the quanta emission rate of SARS-CoV-2 infected subject. • The approach estimates the quanta emission rate from the viral load in sputum. • Vocalization during light activity can lead to quanta emission rate >100 quanta h-1.

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                SUSTDE
                Sustainability
                Sustainability
                MDPI AG
                2071-1050
                March 2021
                March 03 2021
                : 13
                : 5
                : 2699
                Article
                10.3390/su13052699
                d6d32e20-0e75-40ad-8f91-5299d53f3232
                © 2021

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article

                Related Documents Log
                scite_

                Similar content374

                Cited by12

                Most referenced authors413