88
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Characterization of Transcriptome Remodeling during Cambium Formation Identifies MOL1 and RUL1 As Opposing Regulators of Secondary Growth

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Cell-to-cell communication is crucial for the development of multicellular organisms, especially during the generation of new tissues and organs. Secondary growth—the lateral expansion of plant growth axes—is a highly dynamic process that depends on the activity of the cambium. The cambium is a stem cell–like tissue whose activity is responsible for wood production and, thus, for the establishment of extended shoot and root systems. Attempts to study cambium regulation at the molecular level have been hampered by the limitations of performing genetic analyses in trees and by the difficulty of accessing this tissue in model systems such as Arabidopsis thaliana. Here, we describe the roles of two receptor-like kinases, REDUCED IN LATERAL GROWTH1 (RUL1) and MORE LATERAL GROWTH1 (MOL1), as opposing regulators of cambium activity. Their identification was facilitated by a novel in vitro system in which cambium formation is induced in isolated Arabidopsis stem fragments. By combining this system with laser capture microdissection, we characterized transcriptome remodeling in a tissue- and stage-specific manner and identified series of genes induced during different phases of cambium formation. In summary, we provide a means for investigating cambium regulation in unprecedented depth and present two signaling components that control a process responsible for the accumulation of a large proportion of terrestrial biomass.

          Author Summary

          In contrast to animals, plants have the capacity to grow and form new organs throughout their entire life cycle, thereby building up some of the largest organisms on earth. This remarkable capacity is based on the activity of stem cell–like tissues—the meristems—located at shoot and root apices and, in a large repertoire of species, in lateral positions at the flanks of growth axes. In comparison to apical meristems, our knowledge of the molecular mechanisms controlling the activity of lateral meristems like the cambium is very limited. This is despite the fact that lateral growth is responsible for wood formation, and thus for the accumulation of large amounts of terrestrial biomass, and for fixation of atmospheric CO 2. Here, we introduce an in vitro system by which cambium initiation can be stimulated under controlled conditions in stems of the reference plant Arabidopsis thaliana. By revealing genome-wide and tissue-specific alterations in transcript accumulation during cambium initiation, we identify two novel receptor-like kinases, namely MOL1 and RUL1, as opposing cambium regulators. These findings demonstrate that our in vitro system represents a valuable tool for studying cambium regulation and open up possibilities to dissect lateral growth in plants from novel perspectives.

          Related collections

          Most cited references51

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          NCBI GEO: archive for high-throughput functional genomic data

          The Gene Expression Omnibus (GEO) at the National Center for Biotechnology Information (NCBI) is the largest public repository for high-throughput gene expression data. Additionally, GEO hosts other categories of high-throughput functional genomic data, including those that examine genome copy number variations, chromatin structure, methylation status and transcription factor binding. These data are generated by the research community using high-throughput technologies like microarrays and, more recently, next-generation sequencing. The database has a flexible infrastructure that can capture fully annotated raw and processed data, enabling compliance with major community-derived scientific reporting standards such as ‘Minimum Information About a Microarray Experiment’ (MIAME). In addition to serving as a centralized data storage hub, GEO offers many tools and features that allow users to effectively explore, analyze and download expression data from both gene-centric and experiment-centric perspectives. This article summarizes the GEO repository structure, content and operating procedures, as well as recently introduced data mining features. GEO is freely accessible at http://www.ncbi.nlm.nih.gov/geo/.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The stem cell population of Arabidopsis shoot meristems in maintained by a regulatory loop between the CLAVATA and WUSCHEL genes.

            The higher-plant shoot meristem is a dynamic structure whose maintenance depends on the coordination of two antagonistic processes, organ initiation and self-renewal of the stem cell population. In Arabidopsis shoot and floral meristems, the WUSCHEL (WUS) gene is required for stem cell identity, whereas the CLAVATA1, 2, and 3 (CLV) genes promote organ initiation. Our analysis of the interactions between these key regulators indicates that (1) the CLV genes repress WUS at the transcript level and that (2) WUS expression is sufficient to induce meristem cell identity and the expression of the stem cell marker CLV3. Our data suggest that the shoot meristem has properties of a self-regulatory system in which WUS/CLV interactions establish a feedback loop between the stem cells and the underlying organizing center.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Comparative analysis of the receptor-like kinase family in Arabidopsis and rice.

              Receptor-like kinases (RLKs) belong to the large RLK/Pelle gene family, and it is known that the Arabidopsis thaliana genome contains >600 such members, which play important roles in plant growth, development, and defense responses. Surprisingly, we found that rice (Oryza sativa) has nearly twice as many RLK/Pelle members as Arabidopsis does, and it is not simply a consequence of a larger predicted gene number in rice. From the inferred phylogeny of all Arabidopsis and rice RLK/Pelle members, we estimated that the common ancestor of Arabidopsis and rice had >440 RLK/Pelles and that large-scale expansions of certain RLK/Pelle members and fusions of novel domains have occurred in both the Arabidopsis and rice lineages since their divergence. In addition, the extracellular domains have higher nonsynonymous substitution rates than the intracellular domains, consistent with the role of extracellular domains in sensing diverse signals. The lineage-specific expansions in Arabidopsis can be attributed to both tandem and large-scale duplications, whereas tandem duplication seems to be the major mechanism for recent expansions in rice. Interestingly, although the RLKs that are involved in development seem to have rarely been duplicated after the Arabidopsis-rice split, those that are involved in defense/disease resistance apparently have undergone many duplication events. These findings led us to hypothesize that most of the recent expansions of the RLK/Pelle family have involved defense/resistance-related genes.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Genet
                plos
                plosgen
                PLoS Genetics
                Public Library of Science (San Francisco, USA )
                1553-7390
                1553-7404
                February 2011
                February 2011
                17 February 2011
                : 7
                : 2
                : e1001312
                Affiliations
                [1]Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Vienna, Austria
                Peking University, China
                Author notes

                ¤: Current address: Department of Biological and Environmental Sciences and Institute of Biotechnology, University of Helsinki, Helsinki, Finland

                Conceived and designed the experiments: JA TG. Performed the experiments: JA RL MS LN. Analyzed the data: JA RL LN TG. Wrote the paper: TG.

                Article
                10-PLGE-RA-4216R2
                10.1371/journal.pgen.1001312
                3040665
                21379334
                d6d902d1-6bba-491a-a429-826380cf44b4
                Agusti et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 23 September 2010
                : 14 January 2011
                Page count
                Pages: 14
                Categories
                Research Article
                Developmental Biology/Pattern Formation
                Developmental Biology/Plant Growth and Development
                Developmental Biology/Stem Cells
                Genetics and Genomics/Plant Genetics and Gene Expression

                Genetics
                Genetics

                Comments

                Comment on this article