37
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      APLP2 regulates the expression of MHC class I molecules on irradiated Ewing’s sarcoma cells

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Ewing’s sarcoma (EWS) is a pediatric cancer that is conventionally treated by surgery, chemotherapy, and radiation therapy. Innovative immunotherapies to treat EWS are currently under development. Unfortunately for EWS patients, when the disease is found to be resistant to current therapeutic approaches, the prognosis is predictably grim. Radiation therapy and immunotherapy could potentially synergize in the eradication of EWS, as some studies have previously shown that irradiation increases the presence of immune receptors, including MHC class I molecules, on the surface of tumor cells. However, EWS cells have been reported to express low levels of MHC class I molecules, a phenotype that would inhibit T-cell mediated lysis. We have previously demonstrated that the transgene-driven overexpression of amyloid β (A4) precursor-like protein 2 (APLP2) reduces the expression of MHC class I molecules on the surface of human cervical carcinoma HeLa cells. We thus examined whether endogenously expressed APLP2 downregulates MHC class I expression on EWS cells, particularly upon irradiation. We found that irradiation induces the relocalization of APLP2 and MHC class I molecules on the surface of EWS cells, redistributing cells from subpopulations with relatively low APLP2 and high MHC class I into subpopulations with relatively high APLP2 and low MHC class I surface expression. Consistent with these findings, the transfection of an APLP2-targeting siRNA into EWS cells increased MHC class I expression on the cell surface. Furthermore, APLP2 was found by co-immunoprecipitation to bind to MHC class I molecules. Taken together, these findings suggest that APLP2 inhibits MHC class I expression on the surface of irradiated EWS cells by a mechanism that involves APLP2/MHC class I interactions. Thus, therapeutic strategies that limit APLP2 expression may boost the ability of T cells to recognize and eradicate EWS in patients.

          Related collections

          Most cited references46

          • Record: found
          • Abstract: found
          • Article: not found

          Radiation-induced IFN-gamma production within the tumor microenvironment influences antitumor immunity.

          Alterations to the tumor microenvironment following localized irradiation may influence the effectiveness of subsequent immunotherapy. The objective of this study was to determine how IFN-gamma influences the inflammatory response within this dynamic environment following radiotherapy. B16/OVA melanoma cells were implanted into C57BL/6 (wild-type (WT)) and IFN-gamma-deficient (IFN-gamma-/-) mice. Seven days after implantation, mice received 15 Gy of localized tumor irradiation and were assessed 7 days later. Irradiation up-regulated the expression of VCAM-1 on the vasculature of tumors grown in WT but not in IFN-gamma-/- mice. Levels of the IFN-gamma-inducible chemokines MIG and IFN-gamma-inducible protein 10 were decreased in irradiated tumors from IFN-gamma-/- mice compared with WT. In addition to inducing molecular cues necessary for T cell infiltration, surface MHC class I expression is also up-regulated in response to IFN-gamma produced after irradiation. The role of IFN-gamma signaling in tumor cells on class I expression was tested using B16/OVA cells engineered to overexpress a dominant negative mutant IFN-gamma receptor (B16/OVA/DNM). Following implantation and treatment, expression of surface class I on tumor cells in vivo was increased in B16/OVA, but not in B16/OVA/DNM tumors, suggesting IFN-gamma acts directly on tumor cells to induce class I up-regulation. These increases in MHC class I expression correlated with greater levels of activated STAT1. Thus, IFN-gamma is instrumental in creating a tumor microenvironment conducive for T cell infiltration and tumor cell target recognition.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Ewing's sarcoma family of tumors: current management.

            Ewing's sarcoma is the second most frequent primary bone cancer, with approximately 225 new cases diagnosed each year in patients less than 20 years of age in North America. It is one of the pediatric small round blue cell tumors, characterized by strong membrane expression of CD99 in a chain-mail pattern and negativity for lymphoid (CD45), rhabdomyosarcoma (myogenin, desmin, actin) and neuroblastoma (neurofilament protein) markers. Pathognomonic translocations involving the ews gene on chromosome 22 and an ets-type gene, most commonly the fli1 gene on chromosome 11, are implicated in the great majority of cases. Clinical presentation is usually dominated by local bone pain and a mass. Imaging reveals a technetium pyrophosphate avid lesion that, on plain radiograph, is destructive, diaphyseal and classically causes layered periosteal calcification. Magnetic resonance best defines the extent of the lesion. Biopsy should be undertaken by an experienced orthopedic oncologist. Approximately three quarters of patients have initially localized disease. About two thirds survive disease-free. Management, preferably at a specialist center with a multi-disciplinary team, includes both local control-either surgery, radiation or a combination-and systemic chemotherapy. Chemotherapy includes cyclic combinations, incorporating vincristine, doxorubicin, cyclophosphamide, etoposide, ifosfamide and occasionally actinomycin D. Topotecan in combination with cyclophosphamide has shown preliminary activity. Patients with initially metastatic disease fare less well, with about one quarter surviving. Studies incorporating intensive therapy followed by stem cell infusion show no clear benefit. New approaches include anti-angiogenic therapy, particularly since vascular endothelial growth factor is an apparent downstream target of the ews-fli1 oncogene.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The Biology of Ewing sarcoma.

              Sarcomas account for less than 10% of all human malignancies that are believed to originate from as yet poorly defined mesenchymal progenitor cells. They constitute some of the most aggressive adult and childhood cancers in that they have a high metastatic proclivity and are typically refractory to conventional chemo- and radiation therapy. Ewing's sarcoma is a member of Ewing's family tumors (ESFT) and the second most common solid bone and soft tissue malignancy of children and young adults. It is associated in 85% of cases with the t(11;22)(q24:q12) chromosomal translocation that generates fusion of the 5' segment of the EWS gene with the 3' segment of the ETS family gene FLI-1. The resulting EWS-FLI-1 fusion protein is believed to behave as an aberrant transcriptional activator that contributes to ESFT development by altering the expression of its target genes in a permissive cellular environment. Although ESFTs are among the best studied sarcomas, the mechanisms involved in EWS-FLI-1-induced transformation require further elucidation and the primary cells from which ESFTs originate need to be identified. This review will highlight some of the most recent discoveries in the field of Ewing sarcoma biology and origins.
                Bookmark

                Author and article information

                Journal
                Oncoimmunology
                Oncoimmunology
                ONCI
                Oncoimmunology
                Landes Bioscience
                2162-4011
                2162-402X
                01 October 2013
                08 October 2013
                08 October 2013
                : 2
                : 10
                : e26293
                Affiliations
                [1 ]Eppley Institute; University of Nebraska Medical Center; Omaha, NE USA
                [2 ]Department of Biochemistry and Molecular Biology; University of Nebraska Medical Center; Omaha, NE USA
                [3 ]Department of Pathology and Microbiology; University of Nebraska Medical Center; Omaha, NE USA
                Author notes
                [†]

                Current Affiliation: Department of Stem Cell Transplantion and Cellular Therapy; University of Texas MD Anderson Cancer Center; Houston, TX USA

                [* ]Correspondence to: Joyce C Solheim, Email: jsolheim@ 123456unmc.edu
                Article
                2013ONCOIMM0066R 26293
                10.4161/onci.26293
                3862638
                24353913
                d6da77e4-40ad-4e5c-a7e6-391034da5dbf
                Copyright © 2013 Landes Bioscience

                This is an open-access article licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported License. The article may be redistributed, reproduced, and reused for non-commercial purposes, provided the original source is properly cited.

                History
                : 15 March 2013
                : 27 August 2013
                : 27 August 2013
                Categories
                Original Research

                Immunology
                ewing’s sarcoma,hla,mhc class i molecule,amyloid β (a4) precursor-like protein 2,immune evasion,immunotherapy,pediatric cancer,radiation therapy

                Comments

                Comment on this article