4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Relationship between Myoglobin, Aerobic Capacity, Nitric Oxide Synthase Activity and Mitochondrial Function in Fish Hearts

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The dynamic interactions between nitric oxide (NO) and myoglobin (Mb) in the cardiovascular system have received considerable attention. The loss of Mb, the principal O 2 carrier and a NO scavenger/producer, in the heart of some red-blooded fishes provides a unique opportunity for assessing this globin’s role in NO homeostasis and mitochondrial function. We measured Mb content, activities of enzymes of NO and aerobic metabolism [NO Synthase (NOS) and citrate synthase, respectively] and mitochondrial parameters [Complex-I and -I+II respiration, coupling efficiency, reactive oxygen species production/release rates and mitochondrial sensitivity to inhibition by NO (i.e., NO IC 50)] in the heart of three species of red-blooded fish. The expression of Mb correlated positively with NOS activity and NO IC 50, with low NOS activity and a reduced NO IC 50 in the Mb-lacking lumpfish ( Cyclopterus lumpus) as compared to the Mb-expressing Atlantic salmon (Salmo salar) and short-horned sculpin (Myoxocephalus scorpius). Collectively, our data show that NO levels are fine-tuned so that NO homeostasis and mitochondrial function are preserved; indicate that compensatory mechanisms are in place to tightly regulate [NO] and mitochondrial function in a species without Mb; and strongly suggest that the NO IC 50 for oxidative phosphorylation is closely related to a fish’s hypoxia tolerance.

          Related collections

          Most cited references78

          • Record: found
          • Abstract: not found
          • Article: not found

          The L-arginine-nitric oxide pathway.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Deoxymyoglobin is a nitrite reductase that generates nitric oxide and regulates mitochondrial respiration.

            Previous studies have revealed a novel interaction between deoxyhemoglobin and nitrite to generate nitric oxide (NO) in blood. It has been proposed that nitrite acts as an endocrine reservoir of NO and contributes to hypoxic vasodilation and signaling. Here, we characterize the nitrite reductase activity of deoxymyoglobin, which reduces nitrite approximately 36 times faster than deoxyhemoglobin because of its lower heme redox potential. We hypothesize that physiologically this reaction releases NO in proximity to mitochondria and regulates respiration through cytochrome c oxidase. Spectrophotometric and chemiluminescent measurements show that the deoxymyoglobin-nitrite reaction produces NO in a second order reaction that is dependent on deoxymyoglobin, nitrite and proton concentration, with a bimolecular rate constant of 12.4 mol/L(-1)s(-1) (pH 7.4, 37 degrees C). Because the IC(50) for NO-dependent inhibition of mitochondrial respiration is approximately 100 nmol/L at physiological oxygen tensions (5 to 10 mumol/L); we tested whether the myoglobin-dependent reduction of nitrite could inhibit respiration. Indeed, the addition of deoxymyoglobin and nitrite to isolated rat heart and liver mitochondria resulted in the inhibition of respiration, while myoglobin or nitrite alone had no effect. The addition of nitrite to rat heart homogenate containing both myoglobin and mitochondria resulted in NO generation and inhibition of respiration; these effects were blocked by myoglobin oxidation with ferricyanide but not by the xanthine oxidoreductase inhibitor allopurinol. These data expand on the paradigm that heme-globins conserve and generate NO via nitrite reduction along physiological oxygen gradients, and further demonstrate that NO generation from nitrite reduction can escape heme autocapture to regulate NO-dependent signaling.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Plasma nitrite reflects constitutive nitric oxide synthase activity in mammals.

              Changes in plasma nitrite concentration in the human forearm circulation have recently been shown to reflect acute changes in endothelial nitric oxide synthase (eNOS)-activity. Whether basal plasma nitrite is a general marker of constitutive NOS-activity in vivo is yet unclear. Due to the rapid metabolism of nitrite in blood and the difficulties in its analytical determination literature data on levels of nitrite in mammals are largely inconsistent. We hypothesized that constitutive NOS-activity in the circulatory system is relatively uniform throughout the mammalian kingdom. If true, this should result in comparable systemic plasma nitrite levels in different species. Using three different analytical approaches we determined plasma nitrite concentration to be in a nanomolar range in a variety of species: humans (305 +/- 23 nmol/l), monkeys (367 +/- 62 nmol/l), minipigs (319 +/- 24 nmol/l), dogs (305 +/- 50 nmol/l), rabbits (502 +/- 21 nmol/l), guinea pigs (412 +/- 44 nmol/l), rats (191 +/- 43 nmol/l), and mice (457 +/- 51 nmol/l). Application of different NOS-inhibitors in humans, minipigs, and dogs decreased NOS-activity and thereby increased vascular resistance. This was accompanied by a significant, up to 80%, decrease in plasma nitrite concentration. A comparison of plasma nitrite concentrations between eNOS(-/-) and NOS-inhibited wild-type mice revealed that 70 +/- 5% of plasma nitrite is derived from eNOS. These results provide evidence for a uniform constitutive vascular NOS-activity across mammalian species.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Role: Academic Editor
                Role: Academic Editor
                Journal
                Antioxidants (Basel)
                Antioxidants (Basel)
                antioxidants
                Antioxidants
                MDPI
                2076-3921
                03 July 2021
                July 2021
                : 10
                : 7
                : 1072
                Affiliations
                Department of Ocean Sciences, Memorial University, St. John’s, NL A1C 5S7, Canada; kclow@ 123456mun.ca (K.A.C.); driedzic@ 123456mun.ca (W.R.D.); kgamperl@ 123456mun.ca (A.K.G.)
                Author notes
                [* ]Correspondence: lucie.gerber@ 123456ibv.uio.no
                [†]

                Indicates that these authors contributed equally to this work.

                Author information
                https://orcid.org/0000-0003-3837-4879
                Article
                antioxidants-10-01072
                10.3390/antiox10071072
                8301165
                d6e8ce3e-7c04-48ce-9bb8-2fab1b1ed811
                © 2021 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( https://creativecommons.org/licenses/by/4.0/).

                History
                : 01 June 2021
                : 30 June 2021
                Categories
                Article

                mitochondrial respiration,reactive oxygen species,nitric oxide,citrate synthase activity,salmon,sculpin,lumpfish

                Comments

                Comment on this article