Blog
About

11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Norm-based face encoding by single neurons in the monkey inferotemporal cortex.

      Nature

      physiology, cytology, Temporal Lobe, Pattern Recognition, Visual, Neurons, Models, Neurological, Microelectrodes, Male, Macaca mulatta, Humans, anatomy & histology, Face, Caricatures as Topic, Animals

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The rich and immediate perception of a familiar face, including its identity, expression and even intent, is one of the most impressive shared faculties of human and non-human primate brains. Many visually responsive neurons in the inferotemporal cortex of macaque monkeys respond selectively to faces, sometimes to only one or a few individuals, while showing little sensitivity to scale and other details of the retinal image. Here we show that face-responsive neurons in the macaque monkey anterior inferotemporal cortex are tuned to a fundamental dimension of face perception. Using a norm-based caricaturization framework previously developed for human psychophysics, we varied the identity information present in photo-realistic human faces, and found that neurons of the anterior inferotemporal cortex were most often tuned around the average, identity-ambiguous face. These observations are consistent with face-selective responses in this area being shaped by a figural comparison, reflecting structural differences between an incoming face and an internal reference or norm. As such, these findings link the tuning of neurons in the inferotemporal cortex to psychological models of face identity perception.

          Related collections

          Most cited references 22

          • Record: found
          • Abstract: found
          • Article: not found

          A cortical region consisting entirely of face-selective cells.

          Face perception is a skill crucial to primates. In both humans and macaque monkeys, functional magnetic resonance imaging (fMRI) reveals a system of cortical regions that show increased blood flow when the subject views images of faces, compared with images of objects. However, the stimulus selectivity of single neurons within these fMRI-identified regions has not been studied. We used fMRI to identify and target the largest face-selective region in two macaques for single-unit recording. Almost all (97%) of the visually responsive neurons in this region were strongly face selective, indicating that a dedicated cortical area exists to support face processing in the macaque.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A unified account of the effects of distinctiveness, inversion, and race in face recognition.

            A framework is outlined in which individual faces are assumed to be encoded as a point in a multidimensional space, defined by dimensions that serve to discriminate faces. It is proposed that such a framework can account for the effects of distinctiveness, inversion, and race on recognition of faces. Two specific models within this framework are identified: a norm-based coding model, in which faces are encoded as vectors from a population norm or prototype, and a purely exemplar-based model. Both models make similar predictions, albeit in different ways, concerning the interactions between the effects of distinctiveness, inversion and race. These predictions were supported in five experiments in which photographs of faces served as stimuli. The norm-based coding version and the exemplar-based version of the framework cannot be distinguished on the basis of the experiments reported, but it is argued that a multidimensional space provides a useful heuristic framework to investigate recognition of faces. Finally, the relationship between the specific models is considered and an implementation in terms of parallel distributed processing is briefly discussed.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Visual object recognition.

              Visual object recognition is of fundamental importance to most animals. The diversity of tasks that any biological recognition system must solve suggests that object recognition is not a single, general purpose process. In this review, we consider evidence from the fields of psychology, neuropsychology, and neurophysiology, all of which supports the idea that there are multiple systems for recognition. Data from normal adults, infants, animals, and brain damaged patients reveal a major distinction between the classification of objects at a basic category level and the identification of individual objects from a homogeneous object class. An additional distinction between object representations used for visual perception and those used for visually guided movements provides further support for a multiplicity of visual recognition systems. Recent evidence from psychophysical and neurophysiological studies indicates that one system may represent objects by combinations of multiple views, or aspects, and another may represent objects by structural primitives and their spatial interrelationships.
                Bookmark

                Author and article information

                Journal
                16862123
                10.1038/nature04951

                Comments

                Comment on this article