4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Physical exertion modeling for construction tasks using combined cardiorespiratory and thermoregulatory measures

      , , , , ,
      Automation in Construction
      Elsevier BV

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references61

          • Record: found
          • Abstract: not found
          • Article: not found

          Self-powered ultra-flexible electronics via nano-grating-patterned organic photovoltaics

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Influence of body temperature on the development of fatigue during prolonged exercise in the heat.

            We investigated whether fatigue during prolonged exercise in uncompensable hot environments occurred at the same critical level of hyperthermia when the initial value and the rate of increase in body temperature are altered. To examine the effect of initial body temperature [esophageal temperature (Tes) = 35.9 +/- 0.2, 37.4 +/- 0. 1, or 38.2 +/- 0.1 (SE) degrees C induced by 30 min of water immersion], seven cyclists (maximal O2 uptake = 5.1 +/- 0.1 l/min) performed three randomly assigned bouts of cycle ergometer exercise (60% maximal O2 uptake) in the heat (40 degrees C) until volitional exhaustion. To determine the influence of rate of heat storage (0.10 vs. 0.05 degrees C/min induced by a water-perfused jacket), four cyclists performed two additional exercise bouts, starting with Tes of 37.0 degrees C. Despite different initial temperatures, all subjects fatigued at an identical level of hyperthermia (Tes = 40. 1-40.2 degrees C, muscle temperature = 40.7-40.9 degrees C, skin temperature = 37.0-37.2 degrees C) and cardiovascular strain (heart rate = 196-198 beats/min, cardiac output = 19.9-20.8 l/min). Time to exhaustion was inversely related to the initial body temperature: 63 +/- 3, 46 +/- 3, and 28 +/- 2 min with initial Tes of approximately 36, 37, and 38 degrees C, respectively (all P < 0.05). Similarly, with different rates of heat storage, all subjects reached exhaustion at similar Tes and muscle temperature (40.1-40.3 and 40. 7-40.9 degrees C, respectively), but with significantly different skin temperature (38.4 +/- 0.4 vs. 35.6 +/- 0.2 degrees C during high vs. low rate of heat storage, respectively, P < 0.05). Time to exhaustion was significantly shorter at the high than at the lower rate of heat storage (31 +/- 4 vs. 56 +/- 11 min, respectively, P < 0.05). Increases in heart rate and reductions in stroke volume paralleled the rise in core temperature (36-40 degrees C), with skin blood flow plateauing at Tes of approximately 38 degrees C. These results demonstrate that high internal body temperature per se causes fatigue in trained subjects during prolonged exercise in uncompensable hot environments. Furthermore, time to exhaustion in hot environments is inversely related to the initial temperature and directly related to the rate of heat storage.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Mental fatigue: costs and benefits.

              A framework for mental fatigue is proposed, that involves an integrated evaluation of both expected rewards and energetical costs associated with continued performance. Adequate evaluation of predicted rewards and potential risks of actions is essential for successful adaptive behaviour. However, while both rewards and punishments can motivate to engage in activities, both types of motivated behaviour are associated with energetical costs. We will review findings that suggest that the nucleus accumbens, orbitofrontal cortex, amygdala, insula and anterior cingulate cortex are involved evaluating both the potential rewards associated with performing a task, as well as assessing the energetical demands involved in task performance. Behaviour will only proceed if this evaluation turns out favourably towards spending (additional) energy. We propose that this evaluation of predicted rewards and energetical costs is central to the phenomenon of mental fatigue: people will no longer be motivated to engage in task performance when energetical costs are perceived to outweigh predicted rewards.
                Bookmark

                Author and article information

                Contributors
                Journal
                Automation in Construction
                Automation in Construction
                Elsevier BV
                09265805
                April 2020
                April 2020
                : 112
                : 103079
                Article
                10.1016/j.autcon.2020.103079
                d6f399a9-87c0-4c2c-abed-db308e3087d7
                © 2020

                https://www.elsevier.com/tdm/userlicense/1.0/

                History

                Comments

                Comment on this article